KEVAN

User's Manual KV10 series inverter

Chapter 1 Summary

1.1 Safety Precautions

In order to ensure the safe and reasonable use of this product, please fully understand the safety precautions described in this manual before using this product.

Warning signs and meanings

The following marks are used in this manual to indicate that they are important for safety. Failure to follow these precautions could result in personal injury or death, and damage to the product and associated systems.

!	DANGER: Failure may result in death or serious safety accident.
!	Caution: Misoperation may cause minor injuries.

Operation qualification

This product must be operated by trained professionals. In addition, operators must be trained in professional skills, familiar with the installation, wiring, operation and maintenance of the equipment, and properly respond to various emergencies in use.

Safety guidance

Warning signs are proposed for your safety and are measures taken to prevent injury to operators and damage to the product and associated systems; please read this manual carefully before use, and strictly follow the safety rules and warnings in this manual Flag to operate.

- Correct transportation, storage, installation, and careful operation and maintenance are vital to the safe operation of the inverter. During transportation and storage, ensure that the inverter is not subject to shock and vibration. It must also be stored in a dry, non-corrosive gas, non-conductive dust, and place where the ambient temperature is less than $60^{\circ} \mathrm{C}$.
- This product has dangerous voltage, and it controls the motion mechanism with potential danger. If you do not follow the regulations or operate in accordance with the requirements of this manual, it may cause personal injury and death, and damage to the product and related systems.
- Do not perform wiring work when the power is on, otherwise there is a danger of death due to electric shock; during wiring, inspection, maintenance, etc., please cut off the power of all related equipment, and confirm that the DC voltage of the main circuit has dropped to Safety level, wait 5 minutes before performing related operations.
- The power cables, motor cables, and control cables must be tightly connected. The ground terminal must be reliably grounded and the ground resistance must be less than 10Ω.
- The static electricity of the human body will seriously damage the internal sensitive devices. Before performing related operations, please observe the measures and methods prescribed by the electrostatic discharge prevention measures (ESD), otherwise the inverter may be damaged.
- Because the output voltage of the inverter is a pulse waveform, if a capacitor to improve power factor or a varistor for lightning protection is installed on the output side, be sure to remove or modify it on the input side of the inverter.
- Do not add switching devices such as circuit breakers and contactors
on the output side of the inverter (if you must connect switching devices on the output side, you must ensure that the output current of the inverter is zero during the switching operation).
- No matter where the fault occurs in the control equipment, it may cause shutdown and major accidents. Therefore, please take necessary external protective measures or backup devices.
- This product can only be used for the purpose specified by the manufacturer. It must not be used in emergency, rescue, marine, medical, aviation, nuclear facilities and other special fields without permission.
- The maintenance of this product can only be performed by the company or professionals authorized by the company. Unauthorized modification and use of accessories not approved by the company may cause product failure. During maintenance, any defective device must be replaced in time.

1.2 Before use

After receiving the product you ordered, please check the outer package if have damage or not, open the outer package after confirming the integrity, and confirm whether the inverter is damaged, scratched or dirt (the damage caused by the transportation is not included in the "Three Guarantees" of the company range). If the product you received has been damaged during shipping, please contact us or the shipping company immediately. After confirming that the received product is intact, please confirm whether the received inverter model is the same as the product you ordered.

Position and content of nameplate

Nameplate model description and rated parameters

Code	Voltage leve1
2	220 V
3	380 V

Code	Adapted motor power
R75	0.75 KW
1R5	1.5 KW
2R2	2.2 KW
004	4 KW

Voltage	220V	$\mathbf{3 8 0 V}$
Power (KW)	Rated output current (A)	
0.75	4	3
1.5	7	4
2.2	10	5
4		9.5

1.3 Technical specifications

Item		Specification
Power input	Voltage, Frequency	Single-phase $220 \mathrm{~V} 50 / 60 \mathrm{~Hz}$; Three-phase $380 \mathrm{~V} 50 / 60 \mathrm{~Hz}$;
	Allow fluctuations	Voltage imbalance rate: $<3 \%$; Frequency: $\pm 5 \%$; Distortion rate meets IEC61800-2 requirements
	closing striking current	Less than rated current
	Power factor	≥ 0.94 (with DC reactor)
	Inverter efficiency	$\geq 96 \%$
Output	Output voltage	Output under rated conditions: 3 phases, $0 \sim$ input voltage, error less than 5\%
	Output frequency range	$0 \sim 600 \mathrm{~Hz}$
	Output frequency accuracy	$\pm 0.5 \%$ of the maximum frequency value

Item		Specification
	Overload capacity	T3 model: 150% rated current 1 minute, 180% rated current 5 seconds, 200% rated current 0.5 seconds S2 model: 150% rated current 20 seconds, 180% rated current 0.5 seconds
Main control performance	Motor control mode	PG-free V / F control, PG-free vector control (T3 series)
	Modulation	Optimized space vector PWM modulation
	Carrier frequency	$0.7 \sim 16.0 \mathrm{kHz}$
	Speed control range	Vector control without PG, rated load 1;100;
	Steady speed accuracy	Vector control without $\mathrm{PG}: \leq 2 \%$ rated synchronous speed;
	Starting torque	Vector control without PG: 150% of rated torque at 0.5 Hz ;
	Torque response	Vector control without PG: $<20 \mathrm{~ms}$;
	Frequency accuracy	Digital setting: maximum frequency \times $\pm 0.01 \%$ Analog setting: maximum frequency $x \pm 0.2 \%$
	Frequency resolution	Digital setting: 0.01 Hz ; Analog setting: maximum frequency $\times 0.05 \%$
Product basic	Torque control	Torque setting calculation, torque mode speed limitation

Item		Specification
functions	DC braking capacity	Starting frequency: $0.00 \sim 50.00 \mathrm{~Hz}$; Braking time: $0.0 \sim 60.0 \mathrm{~s}$; Braking current: $0.0 \sim 150.0 \%$ of rated current
	Torque boost	Automatic torque boost $0.0 \% \sim$ 100.0%; manual torque boost $0.0 \% \sim 30.0 \%$
	V/F curve	Four modes: linear torque characteristic curve, self-set V/F curve, reduced torque characteristic curve ($1.1 \sim 2.0$ power), square V / F curve
	Acceleration/ deceleration curve	Two ways: linear acceleration and deceleration, S curve acceleration and deceleration Four sets of acceleration and deceleration time, time unit 0.01 s , maximum 650.00 s
	Rated output voltage	Using the power supply voltage compensation function, the rated voltage of the motor is 100%, which can be set within the range of 50 to 100% (the output cannot exceed the input voltage)
	Automatic voltage adjustment	When the grid voltage fluctuates, it can automatically keep the output voltage constant
	Automatic energy-saving operation	Under V / F control mode, the output voltage is automatically optimized according to the load to achieve energy-saving operation

Item		Specification
	Automatic current limit	Automatic current limit during operation to prevent frequent overcurrent fault trips
	Instant power off processing	Uninterrupted operation through bus voltage control during momentary power failure
	Standard function	PID control, speed tracking and restart after power failure, skip frequency, frequency upper and lower limit control, program operation, multi-stage speed, RS485, analog output, frequency pulse output, parameter access level setting, common parameter setting, monitoring parameter comparator output, Counting and timing function, wobble frequency function
	Frequency setting channel	Keyboard digital setting, keyboard potentiometer, analog voltage / current terminal AI, communication reference and multi-channel terminal selection, combination of main and auxiliary channels, can be switched in various ways
	Feedback input channel	Keyboard potentiometer, voltage / current terminal AI, communication reference, pulse input PUL, PUL pulse input multiplex X4 terminal
	Command running channel	Operation panel setting, external terminal setting, communication setting

Item		Specification	
	Command input signal	Start, stop, forward and reverse, jog, multi-speed, free stop, reset, acceleration / deceleration time selection, frequency setting channel selection, external fault alarm	
	External output signal	1 relay output, 1 collector Y terminal output, 1 AO output, selectable as $0 \sim 10 \mathrm{~V}$ or $0 \sim 20 \mathrm{~mA}$ or $4 \sim$ 20mA output	
Protective function		Over-voltage, under-voltage, current limit, over-current, overload, electronic thermal relay, over-temperature, over-voltage stall, data protection, rapid protection, input and output phase loss protection	
Keyboard display	LED display	Pluggable keyboard: single-line 5-digit digital tube display	Can monitor 1 inverter status
	Condition monitoring	All parameters of the monitoring parameter group such as output frequency, given frequency, output current, input voltage, output voltage, motor speed, PID feedback, PID given value, module temperature, given torque, output torque, etc.	
	Error alarm	Overvoltage, undervoltage, overcurrent, short circuit, phase loss, overload, overheating, overvoltage stall, current limit, data protection is damaged, current fault operating conditions, historical fault	

Item		Specification
Environment	Installation site	Altitude is less than 1000 meters, derating for use above 1000 meters, derating 1% for every 100 meters; no condensation, icing, rain, snow, hail, etc., solar radiation is less than $700 \mathrm{~W} /$ m 2 , air pressure is $70 \sim 106 \mathrm{kPa}$
	Temperature, humidity	$-10 \sim+50{ }^{\circ} \mathrm{C}$, derating above $40^{\circ} \mathrm{C}$, maximum temperature $60^{\circ} \mathrm{C}$ (no-load operation) 5% to $95 \% \mathrm{RH}$ (non-condensing)
	Vibration	When $9 \sim 200 \mathrm{~Hz}, 5.9 \mathrm{~m} / \mathrm{s} 2(0.6 \mathrm{~g})$
	Storage temperature	$-30 \sim+60^{\circ} \mathrm{C}$
	Installation method	Wall-mounted
	Protection grade	IP20
	Cooling method	Forced air cooling

1.4 Standard connection diagram

Note:

1. Select the braking resistor resistance. For details, please refer to the braking resistor specifications recommended by KV10 series inverters.
2. Multi-function input terminals (X1 $\sim \mathrm{X} 4 / \mathrm{PUL}$), compatible design of NPN, PNP transistor signal input, factory default is NPN transistor signal type input;
3. The analog monitoring output is a dedicated output for indicator meters such as ammeters and voltmeters, and cannot be used for control operations such as feedback control;
4. Due to the existence of multiple pulse types in actual use, please refer to the detailed description for the specific wiring method. The maximum pulse input specification: $50 \mathrm{KHz} / 24 \mathrm{~V}$.

1.5 Auxiliary terminal output capability

Terminal	Function definition	Maximum output
$\mathbf{+ 1 0 V}$	10 V auxiliary power output, reference potential is GND	50 mA
$\mathbf{A O}$	Analog monitoring output, reference potential is GND	Maximum output 2mA when used as voltage type signal
$\mathbf{+ 2 4 V}$	24 V auxiliary power output, reference potential is GND	100 mA
\mathbf{Y}	Open collector output, programmable action object	DC24V/50mA
$\mathbf{T A / T B / T C ~}$	Passive contact output, programmable action object	$3 \mathrm{~A} / 240 \mathrm{VAC}$ $5 \mathrm{~A} / 30 \mathrm{VDC}$

1.6 Function diagram and description of transfer switch

Tag number	Digit coding	Choose location	Function Description
S9	1	ON	EnableAO-U voltage output, output range: $0 \sim 10 \mathrm{~V}$ (Factory default)
		OFF	Turn off AO-U voltage output
	2	ON	Enable AO-I current output, output range: $0 \sim 20 \mathrm{~mA}$ or $4 \sim 20 \mathrm{~mA}$
		OFF	Turn off AO-I current output
	3	ON	RS485 communication terminal resistance
		OFF	Disconnect RS485 communication terminal resistance (Factory default)
	4	I	AI adaptive current type analog input, $0 \sim 20 \mathrm{~mA}$ or $4 \sim 20 \mathrm{~mA}$
		U	AI adaptive voltage type analog input, $0 \sim 10 \mathrm{~V}$ (Factory default)

1.7 Recommended braking resistor specifications and instructions for the inverter

Three-phase 380V voltage level				
Motor Power (KW)	Resistance $(\boldsymbol{\Omega})$	Resistance power (W or KW)	Braking torque $(\%)$	
0.75 KW	750Ω	150 W	100%	

1.5 KW	400Ω	300 W	100%
2.2 KW	250Ω	400 W	100%
4.0 KW	150Ω	500 W	100%
5.5 KW	100Ω	600 W	100%
7.5 KW	75Ω	780 W	100%
Single-phase 220V voltage level			
Motor Power (KW)	Resistance (Ω)	Resistance power (W or KW)	Braking torque $(\%)$
0.4 KW	400Ω	100 W	100%
0.75 KW	200Ω	120 W	100%
1.5 KW	100Ω	300 W	100%
2.2 KW	75Ω	300 W	100%
4.0 KW	50Ω	500 W	100%

The braking resistor resistance and resistance power described in the above table are determined in accordance with ordinary inertia loads and intermittent braking methods. If it needs to be used in the occasion of large inertia and frequent braking for a long time, please adjust the braking resistor resistance and resistance power according to the specifications of the selected inverter and the rated parameters of the braking unit. If in doubt, please consult the Customer Service Department of Shenzhen Keyuan Electric Technology Co., Ltd.

Chapter 2 Installation

In order to ensure the safe use of the product by the user, maximize the performance of the inverter, and ensure the reliable operation of the inverter, please use this product strictly in accordance with the environmental, wiring, and ventilation requirements described in this chapter.

Inverter and keyboard dimensions

Inverter model	Dimensions (mm)				Installation size (mm)		Installation Aperture
	W	D	H1	H	W1	D1	Ф
KV10-S2-R75G-B	86	162	128	137	76	152	4.5
KV10-S2-1R5G-B	91	175	128	137	81	164	4.5
KV10-S2-2R2G-B							
KV10-T3-R75G-B	86	162	128	137	76	152	4.5
KV10-T3-1R5G-B							
KV10-T3-2R2G-B							

External keyboard dimensions of KV10 series

Outline and opening size of kv10 series external keyboard pocket

Chapter 3 Keyboard Layout and Operation Instructions

3.1 Keyboard operator appearance

3.2 Key functions

Key symbol	Function definition	Function description
PRG	Menu	First level menu entry or exit
SET	Set / shift key	Enter the menu screen step by step and confirm the setting parameters
A	Up and down	
keys	Data or function code increment and decrement	
RUN	Run key	In keyboard operation mode, used for running operation
STOP	Stop/Reset button	When running, press this key to stop the running operation; if fault alarm, it is used to reset the operation The characteristics of this key are restricted by the F4-01 parameter

\ll	Shift key	In the display interface, select the display parameter cyclically; when changing the parameters, it is used to change the bit.
MF.K	Multi-function key	Select function switching according to F4-00 parameters, which can be defined as jog or running

3.3 Light meaning

Name		Status	Meaning
Unit indicator	Hz	Flashing / On	Frequency unit
	A	On	Current unit o
	V	On	Voltage unit
	RPM	On	Speed unit
	$\%$	Flashing / On	Percentage unit
Indicatus	RUN	On	Inverter forward running
	RUN	Flashing /On	Inverter reverse running
	RUN	Off	Inverter shutdown

Chapter 4 Function Table

This chapter only provides the function summary. For detailed function description, please refer to the KV10 technical manual or consult our company.

4.1 Safety Precautions

Danger

Please pay attention to all the information about safety in this book. Failure to follow the warnings may result in death or serious injury. The company will not be held liable for injuries and equipment damage caused by your company or your customers' failure to comply with the contents of this book.

4.2 How to read the parameter list

- Icons and terminology for control mode

Icons	Content
S2	Effective parameters of single-phase (S2) inverter
T3	Effective parameters of three-phase (T3) inverter

- Icons and terminology for control mode

Icons	Content
\bigcirc	Parameters that cannot be modified during operation
\bullet	Parameters that can be modified during operation
\times	This parameter can only be read and cannot be modified
$※$	This parameter is related to the inverter model

4.3 Functional group

F0 Basic parameter group

Function code (address)	Function code name	Factory default	Setting value range and definition	Attr ibut es	Note
F0-00 (0×000)	Control operation mode	0	0: VF control $1:$ PG-free vector control	O	S2 only supports VF control

$\begin{gathered} \hline \hline \text { F0-01 } \\ (0 x 001) \\ \hline \end{gathered}$	Kepp			\bigcirc	
$\begin{aligned} & \text { F0-02 } \\ & (0 x 002) \end{aligned}$	Run instruction selection	0	0 : keyboard 1: terminal 2: RS485 communication	\bigcirc	
$\begin{aligned} & \text { F0-03 } \\ & (0 x 003) \end{aligned}$	Main frequency given source	0	0 : keyboard frequency given frequency 1: keyboard potentiometer	\bullet	
$\begin{aligned} & \text { F0-04 } \\ & (0 x 004) \end{aligned}$	Auxiliary frequency given source	1	2: Analog AI given 3: Terminal pulse HDI given 4: RS485 communication given 5: Terminal UP / DW control 6: PID control given 7: Program control (PLC) given 8: Multi-speed setting	\bullet	
$\begin{aligned} & \text { F0-05 } \\ & (0 x 005) \end{aligned}$	Auxiliary frequency reference	0	0 : Use the maximum output frequency as the reference source 1: Use the main frequency as the reference source	\bullet	
$\begin{aligned} & \text { F0-06 } \\ & (0 x 006) \end{aligned}$	Frequency command overlay selection	0	0 : main frequency 1: auxiliary frequency 2: primary + secondary 3: primary-secondary 4: Maximum of the two 5: Minimum of the two	\bullet	
$\begin{aligned} & \text { F0-07 } \\ & (0 x 007) \end{aligned}$	Run command bundle	0000	Units: keyboard command bundle Tens place: terminal command binding Hundreds: communication command bundle 0: No bundling 1: keyboard number given 2: Potentiometer given 3: AI given 4: HDI given 5: RS485 given 6: Terminal UP / DW 7: PID given 8: PLC given	\bullet	

			9: Multi-speed setting		
$\begin{aligned} & \text { F0-08 } \\ & (0 x 008) \end{aligned}$	Keyboard number setting frequency	50.00 Hz	$0.00 \sim$ Upper frequency	\bullet	
$\begin{gathered} \hline \text { F0-09 } \\ (0 x 009) \\ \hline \end{gathered}$	Maximum frequency	50.00 Hz	Upper frequency $\sim 600.00 \mathrm{~Hz}$	O	
$\begin{gathered} \text { F0-10 } \\ (0 \mathrm{x} 00 \mathrm{~A}) \end{gathered}$	Upper frequency source selection	0	0: Digital setting of upper limit frequency 1: keyboard potentiometer given 2: Analog AI given 3: Terminal pulse HDI reference 4: RS485 communication given	-	
$\begin{gathered} \text { F0-11 } \\ (0 \times 00 B) \end{gathered}$	Digital setting of upper frequency	50.00 Hz	Lower limit frequency \sim maximum frequency	\bullet	
$\begin{gathered} \hline \text { F0-12 } \\ (0 \times 00 \mathrm{C}) \\ \hline \end{gathered}$	Lower limit frequency	0.00 Hz	0.00~Upper frequency	\bullet	
$\begin{gathered} \text { F0-13 } \\ \text { (0x00D) } \end{gathered}$	Lower limit frequency operation mode	1	0 : stop output 1: Run at the lower limit frequency	O	
$\begin{gathered} \text { F0-14 } \\ (0 \mathrm{x} 00 \mathrm{E}) \end{gathered}$	Acceleration time 0	Model settings	650.00	※	
$\begin{aligned} & \text { F0-15 } \\ & (0 x 00 \mathrm{~F}) \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Deceleration } \\ \text { time } 0 \end{array}$	Model settings		※	
$\begin{aligned} & \text { F0-16 } \\ & (0 x 010) \end{aligned}$	Selection of running direction	0000	One's place: reverse the running direction 0 : The direction is unchanged 1: reverse direction Tens place: running direction prohibited 0 : Invalid 1: Reverse prohibited 2: Forward is prohibited Hundreds place: Frequency	O	

			control direction command $0:$ Invalid $1:$ valid		
$\begin{gathered} \text { F0-17 } \\ (0 x 011) \end{gathered}$	PWMCarrier frequency	Model settings	$0.7 \sim 16.0 \mathrm{kHz}$	※	
$\begin{aligned} & \text { F0-18 } \\ & (0 \mathrm{x} 012) \end{aligned}$	PWM Control mode	1111	Ones place: Carrier is related to temperature 0: Not relevant 1: about Tens place: Carrier is related to output frequency 0: Not relevant 1: about Hundreds place: random PWM enable 0: Forbidden 1: enable Thousands: PWM modulation 0: three-phase modulation 1: automatic switching l:	\bullet	
$\begin{aligned} & \text { F0-19 } \\ & (0 x 013) \end{aligned}$	Parameter initialization	0	0: No operation 1: Restore factory value (do not restore motor parameters) 2: Restore factory value (restore motor parameters) 3: Clear fault records	\bigcirc	0x013

F1 Start-stop control parameter group

Function code number	Function code name	Factory default	Setting value range and definition	Attri bute s	Note
F1-00 $(0 x 0100)$	Start way	0	$0:$ Start directly $1:$ Start after DC injection $2:$ Start after speed tracking	O	
F1-01 $(0 x 0101)$	Start pre-excitation time	0.00 s	$0.00 \sim 60.00 \mathrm{~s}$	O	
F1-02 $(0 x 0102)$	Starting frequency	0.50 Hz	$0.00 \sim 60.00 \mathrm{~Hz}$	O	
F1-03 $(0 x 0103)$	Start frequency hold time	0.0 s	$0.0 \sim 50.0 \mathrm{~s}$	O	

$\begin{array}{\|c\|} \hline \text { F1-04 } \\ (0 \mathrm{x} 0104) \end{array}$	DC injection current	60.0\%	$0.0 \sim 150.0 \%$	O	
$\begin{array}{\|c\|} \hline \text { F1-05 } \\ (0 x 0105) \end{array}$	$\begin{aligned} & \text { DC injection } \\ & \text { time } \end{aligned}$	0.0s	$0.0 \sim 60.0 \mathrm{~s}$	O	
$\left\lvert\, \begin{array}{\|c\|} \hline \text { F1-06 } \\ (0 x 0106) \end{array}\right.$	Speed tracking speed	0.50s	0.00~60.00s	O	
$\left\lvert\, \begin{gathered} \text { F1-07 } \\ (0 \mathrm{x} 0107) \end{gathered}\right.$	Speed tracking shutdown delay	1.00s	$0.00 \sim 60.00 \mathrm{~s}$	O	
F1-08~F1-09		Keep			
$\begin{array}{\|c\|} \hline \text { F1-10 } \\ (0 x 010 \mathrm{~A}) \end{array}$	Stop mode	0	0 : deceleration stop 1: Free stop	\bullet	
$\left.\left\lvert\, \begin{array}{c} \text { F1-11 } \\ (0 \mathrm{x} 010 \mathrm{~B}) \end{array}\right.\right)$	Starting frequency of DC braking at stop	1.00 Hz	$0.00 \sim 50.00 \mathrm{~Hz}$	O	
$\left\lvert\, \begin{array}{\|c\|} \hline \text { F1-12 } \\ (0 \mathrm{x} 010 \mathrm{C}) \end{array}\right.$	DC braking current at stop	60.0\%	0.0~150.0\%	O	
$\left\|\begin{array}{c} \text { F1-13 } \\ (0 \mathrm{x} 010 \mathrm{D}) \end{array}\right\|$	DC brake holding time at stop	0.0s	$0.0 \sim 60.0 \mathrm{~s}$	O	
$\left.\left\lvert\, \begin{array}{c} \text { F1-14 } \\ (0 \mathrm{x} 010 \mathrm{E}) \end{array}\right.\right)$	Minimum output frequency at shutdown	0.50 Hz	$0.00 \sim 50.00 \mathrm{~Hz}$	-	
$\begin{array}{\|c\|} \hline \text { F1-15 } \\ (0 \mathrm{x} 010 \mathrm{~F}) \end{array}$	Keep				
$\left\|\begin{array}{c} \text { F1-16 } \\ (0 \times 0110) \end{array}\right\|$	Acceleration and deceleration	0010	Units: time base selection 0 : maximum frequency 1: fixed frequency 50 Hz 2: set frequency Tens place: \mathbf{S} acceleration and deceleration selection 0 : linear acceleration/ deceleration 1: S curve acceleration and deceleration Hundreds and thousands: reserved	O	
$\begin{array}{\|c\|} \hline \text { F1-17 } \\ (0 \mathrm{x} 0111) \end{array}$	Acceleration start S curve	0.10s	$0.00 \sim 10.00$	O	

	time				
$\left\lvert\, \begin{gathered} \text { F1-18 } \\ (0 \times 0112) \end{gathered}\right.$	Acceleration end S curve time	0.10s	$0.00 \sim 10.00$	O	
$\left\lvert\, \begin{gathered} F 1-19 \\ (0 x 0113) \end{gathered}\right.$	Deceleration start S curve time	0.10s	$0.00 \sim 10.00$	O	
$\left\lvert\, \begin{gathered} \text { F1-20 } \\ (0 \mathrm{x} 0114) \end{gathered}\right.$	S curve time at the end of deceleration	0.10s	$0.00 \sim 10.00$	O	
$\begin{array}{\|c\|} \hline \text { F1-21 } \\ (0 \times 0115) \end{array}$	Acceleration time 1	10.00s	0.01~650.00s	\bullet	
$\begin{array}{\|c\|} \hline \text { F1-22 } \\ (0 \times 0116) \\ \hline \end{array}$	Deceleration time 1	10.00s	0.01~650.00s	\bullet	
$\begin{array}{\|c\|} \hline \text { F1-23 } \\ (0 x 0117) \\ \hline \end{array}$	Acceleration time 2	10.00s	0.01~650.00s	\bullet	
$\begin{array}{\|c\|} \hline \text { F1-24 } \\ (0 x 0118) \\ \hline \end{array}$	Deceleration time 2	10.00s	0.01~650.00s	\bullet	
$\begin{gathered} \text { F1-25 } \\ (0 \times 0119) \end{gathered}$	Acceleration time 3	10.00s	0.01~650.00s	\bullet	
$\left\lvert\, \begin{gathered} \text { F1-26 } \\ (0 x 011 A) \end{gathered}\right.$	Deceleration time 3	10.00s	$0.01 \sim 650.00$ s	-	
$\left\|\begin{array}{c} \text { F1-27 } \\ (0 \mathrm{x} 011 \mathrm{~B}) \end{array}\right\|$	Emergency stop deceleration time	1.00s	0.01~650.00s	\bullet	
$\left\|\begin{array}{c} \text { F1-28 } \\ (0 \mathrm{Ox} 011 \mathrm{C}) \end{array}\right\|$	Forward and reverse dead time	0.0s	$0.0 \sim 120.0 \mathrm{~s}$	O	
$\left\|\begin{array}{c} \text { F1-29 } \\ (0 x 011 D) \end{array}\right\|$	Zero speed torque frequency threshold	0.50 Hz	$0.00 \sim 10.00 \mathrm{~Hz}$	\bullet	
$\binom{\text { F1-30 }}{(0 x 011 \mathrm{E})}$	$\begin{array}{c\|} \hline \begin{array}{l} \text { Zero speed } \\ \text { torque holding } \\ \text { coefficient } \end{array} \\ \hline \end{array}$	60.0\%	0.0~150.0\%	\bullet	
$\left\|\begin{array}{c} \mathrm{F} 1-31 \\ (0 \mathrm{x} 011 \mathrm{~F}) \end{array}\right\|$	Zero speed torque holding time	0	$0.0 \sim 6000.0 \mathrm{~s}$ When set to 6000.0 s, keep	\bullet	

F1-32~F1-34		Keep			
F1-35 $(0 x 0123)$	Restart action selection after power failure	0	$0:$ Invalid $1:$ valid	O	
F1-36 $(0 x 0124)$	Waiting time for restart after power failure	0.50 s	$0.00 \sim 60.00 \mathrm{~s}$		
F1-37 $(0 x 0125)$	Keep				
F1-38 $(0 x 0126)$	Jog running frequency setting	5.00 Hz	$0.00 \sim$ Maximum frequency	\bullet	
F1-39 $(0 x 0127)$	Jog acceleration time	10.00 s	$0.01 \sim 650.00 \mathrm{~s}$	\bullet	
F1-40 $(0 x 0128)$	Jog deceleration time	10.00 s	$0.01 \sim 650.00 \mathrm{~s}$	\bullet	

F2 Multi-function terminal parameter group

Functio n code number	Function code name	Factory default	Setting value range and definition	$\begin{array}{\|c\|} \hline \text { Attri } \\ \text { bute } \\ \text { s } \end{array}$	Note
$\begin{gathered} \text { F2-00 } \\ (0 \times 200) \end{gathered}$	X1 terminal input function selection	1	Refer to attached list 4.21	O	
$\begin{array}{\|c\|} \hline \text { F2-01 } \\ \text { (0x201) } \\ \hline \end{array}$	X2 terminal input function	2	Refer to attached list 4.21	O	
$\begin{array}{c\|} \hline \text { F2-02 } \\ (0 \times 202) \\ \hline \end{array}$	X3 terminal input function	4	Refer to attached list 4.21	O	
$\begin{array}{\|c\|} \hline \text { F2-03 } \\ (0 \times 203) \\ \hline \end{array}$	X4 terminal input function	5	Refer to attached list 4.21	O	
$\begin{gathered} \text { F2-04 } \\ (0 \times 204) \end{gathered}$	$\mathrm{X} 1 \sim \mathrm{X} 4$ terminal characteristics selection	0000	0 : closed effective 1: open effective Ones place: X1 Tens place: X2 Hundreds: X3 Thousands: X4	-	
$\begin{array}{\|c\|} \hline \text { F2-05 } \\ (0 \times 20 \mathrm{~A}) \\ \hline \end{array}$	X1 effective detection delay	0.010	$0.000 \sim 6.000 \mathrm{~s}$	\bullet	

$\begin{array}{\|c} \hline \text { F2-06 } \\ \text { (0x20B) } \\ \hline \end{array}$	X1 invalid detection delay	0.010	$0.000 \sim 6.000 \mathrm{~s}$	\bullet	
$\begin{array}{\|c} \hline \text { F2-07 } \\ (0 \times 20 C) \\ \hline \end{array}$	X2 effective detection delay	0.010	$0.000 \sim 6.000 \mathrm{~s}$	\bullet	
$\begin{array}{\|c} \hline \text { F2-08 } \\ \text { (0x20D) } \\ \hline \end{array}$	X2 invalid detection delay	0.010	$0.000 \sim 6.000 \mathrm{~s}$	\bullet	
$\begin{array}{\|c} \hline \text { F2-09 } \\ (0 \times 20 \mathrm{E}) \\ \hline \end{array}$	X3 effective detection delay	0.010	$0.000 \sim 6.000 \mathrm{~s}$	\bullet	
$\begin{array}{\|c} \hline \text { F2-10 } \\ \text { (0x20F) } \\ \hline \end{array}$	X3 invalid detection delay	0.010	$0.000 \sim 6.000 \mathrm{~s}$	\bullet	
$\begin{array}{\|c} \hline \text { F2-11 } \\ (0 \times 210) \\ \hline \end{array}$	X4 effective detection delay	0.010	$0.000 \sim 6.000 \mathrm{~s}$	\bullet	
$\begin{array}{\|c} \hline \text { F2-12 } \\ (0 \times 211) \\ \hline \end{array}$	X4 invalid detection delay	0.010	$0.000 \sim 6.000 \mathrm{~s}$	\bullet	
$\begin{gathered} \text { F2-13 } \\ (0 \times 21 \mathrm{~A}) \end{gathered}$	Terminal control operation mode	0	0 : two-wire system 1 1: two-wire system 2 2: Three-wire system 1 3: three-wire system 2	○	
$\begin{gathered} \text { F2-14 } \\ (0 \times 21 B) \end{gathered}$	Terminal start protection	0111	0: off 1: open Unit digits: terminal start protection when exiting abnormally Tens place: Jog terminal start protection when abnormal exit Hundreds place: start protection when command channel is switched to terminal Thousands:keep	○	
$\begin{gathered} \text { F2-15 } \\ (0 \times 21 E) \end{gathered}$	HDI input minimum frequency	0.00 kHz	$0.00 \sim 50.00 \mathrm{kHz}$	\bullet	
$\begin{gathered} \text { F2-16 } \\ (0 \times 21 F) \end{gathered}$	HDI minimum frequency corresponding setting	0.00\%	$0.00 \sim 100.00 \%$	\bullet	

F2-17 (0×220)	HDI input maximum frequency	50.00 kHz	$0.00 \sim 50.00 \mathrm{kHz}$		\bullet
F2-18 (0×221)	HDI maximum frequency corresponding setting	100.00%	$0.00 \sim 100.00 \%$		

$\left\lvert\, \begin{gathered} \text { F2-30 } \\ (0 \times 22 D) \end{gathered}\right.$	HDO output function selection	0	0: given frequency 1: output frequency 2: output current 3: input voltage 4: Output voltage 5: mechanical speed 6: given torque 7: Output torque 8: PID given amount 9: PID feedback 10: Output power 11: bus voltage 12: AI input value 13: HDI input value 14: Module temperature 1 15: Communication given	-	Effec tive when Y termi nal outpu t is not functi oning
$\begin{array}{\|\|c\|} \text { F2-31 } \\ (0 \times 22 E) \end{array}$	Output terminal polarity selection	0000	0: positive polarity 1: negative polarity Single digit: Y terminal Tens place: Relay Hundreds, Thousands: Keep	-	
$\begin{gathered} \hline \text { F2-32 } \\ (0 \times 22 F) \end{gathered}$	Y output terminal	1	Refer to attached list	-	
$\begin{array}{\|\|c\|} \hline F 2-33 \\ (0 \times 230) \\ \hline \end{array}$	Relay output	4	Refer to attached list	-	
$\begin{array}{\|c\|} \hline F 2-34 \\ (0 \times 232) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Y output delay } \\ \text { time } \end{array}$	0.010s	0.000 $\sim 6.000 \mathrm{~s}$	\bullet	
$\begin{array}{\|c\|} \hline F 2-35 \\ (0 \times 233) \\ \hline \end{array}$	Relay output delay	0.010s	0.000 $\sim 6.000 \mathrm{~s}$	-	
$\begin{gathered} \text { F2-36 } \\ (0 \times 235) \end{gathered}$	Output frequency level 1 (FDT1)	30.00 Hz	$0.00 \sim$ Maximum frequency	\bullet	
$\begin{array}{\|\|c\|} \hline \text { F2-37 } \\ (0 \times 236) \\ \hline \end{array}$	FDT1 lag	1.00 Hz	$0.00 \sim$ Maximum frequency	\bullet	
$\begin{gathered} \text { F2-38 } \\ (0 \times 237) \end{gathered}$	Output frequency level 2 (FDT2)	50.00 Hz	$0.00 \sim$ Maximum frequency	\bullet	

F2-39 (0×238)	FDT2 lag	1.00 Hz	$0.00 \sim$ Maximum frequency	\bullet	
F2-40 (0×239)	Detected value reaches the given frequency	2.00 Hz	$0.00 \sim 50.00 \mathrm{~Hz}$		\bullet
F2-41 $(0 \times 23 A)$	HDO lower output limit	0.20 kHz	$0.00 \sim 100.00 \mathrm{kHz}$	\bullet	
F2-42 $(0 \times 23 B)$	HDO output upper limit	50.00 kHz	$0.00 \sim 100.00 \mathrm{kHz}$	\bullet	

F3 Analog terminal parameter group

Functio n code number	Function code name	Factory default	Setting value range and definition	Attri bute S	Note
$\begin{gathered} \hline \text { F3-00 } \\ \text { (0x300) } \\ \hline \end{gathered}$	AI lower limit	0.00 V	$0.00 \sim 10.00 \mathrm{~V}$	\bullet	
$\begin{gathered} \text { F3-01 } \\ (0 \times 301) \end{gathered}$	AI lower limit corresponding setting	0.00\%	$-100.00 \sim 100.00 \%$	\bullet	
$\begin{gathered} \text { F3-02 } \\ (0 \times 302) \\ \hline \end{gathered}$	AI upper limit	10.00 V	$0.00 \sim 10.00 \mathrm{~V}$	\bullet	
$\begin{gathered} \text { F3-03 } \\ (0 \times 303) \end{gathered}$	AI upper limit corresponding setting	100.00\%	$-100.00 \sim 100.00 \%$	\bullet	
$\begin{gathered} \text { F3-04 } \\ (0 \times 304) \end{gathered}$	AI filter time	0.010 s	$0.000 \sim 6.000 \mathrm{~s}$	\bullet	
$\begin{gathered} \text { F3-05 } \\ (0 \times 305) \end{gathered}$	AI voltage / current selection	0	0 : voltage 1: current	\bullet	
$\begin{gathered} \text { F3-06 } \\ (0 \times 30 C) \end{gathered}$	AI terminal function selection	0	See X terminal functions	\bigcirc	
$\begin{array}{\|c} \hline \text { F3-07 } \\ (0 \times 30 D) \end{array}$	AI high level setting	70.00\%	$0.00 \sim 100.00 \%$	\bullet	
$\begin{array}{\|c} \hline \text { F3-08 } \\ (0 \times 30 \mathrm{E}) \end{array}$	AI low level setting	30.00\%	$0.00 \sim 100.00 \%$	\bullet	

$\begin{gathered} \text { F3-09 } \\ (0 \times 312) \end{gathered}$	Analog to do terminal effective state setting	0	0 : low level 1: high level	\bullet	
$\begin{gathered} \text { F3-10 } \\ (0 \times 313) \end{gathered}$	Analog input curve selection	0	0: straight 1: curve 1 2: curve 2	\bullet	
$\begin{gathered} \text { F3-11 } \\ (0 \times 314) \end{gathered}$	Keep				
$\begin{gathered} \text { F3-12 } \\ (0 \times 315) \end{gathered}$	Curve 1 lower limit	0.00 V	$0.00 \sim 10.00 \mathrm{~V}$	\bullet	
$\begin{aligned} & \text { F3-13 } \\ & (0 \times 316) \end{aligned}$	Corresponding setting of curve 1 lower limit	0.0\%	$0.00 \sim 100.00 \%$	\bullet	
$\begin{gathered} \text { F3-14 } \\ (0 \times 317) \end{gathered}$	Curve 1 inflection point 1 input voltage	3.00 V	$0.00 \sim 10.00 \mathrm{~V}$	\bullet	
$\begin{aligned} & \text { F3-15 } \\ & (0 \times 318) \end{aligned}$	Curve 1 inflection point 1 corresponding setting	30.00\%	$0.00 \sim 100.00 \%$	\bullet	
$\begin{gathered} \text { F3-16 } \\ (0 \times 319) \end{gathered}$	Curve 1 inflection point 2 input voltage	6.00 V	$0.00 \sim 10.00 \mathrm{~V}$	\bullet	
$\begin{gathered} \text { F3-17 } \\ (0 \times 31 \mathrm{~A}) \end{gathered}$	Curve 1 inflection point 2 corresponding setting	60.00\%	$0.00 \sim 100.00 \%$	\bullet	
$\begin{gathered} \hline \text { F3-18 } \\ (0 \times 31 B) \end{gathered}$	Upper limit of curve 1	10.0 V	$0.00 \sim 10.00 \mathrm{~V}$	\bullet	
$\begin{gathered} \text { F3-19 } \\ (0 \times 31 C) \end{gathered}$	Curve 1 upper limit corresponding setting	100.00\%	$0.00 \sim 100.00 \%$	\bullet	
$\begin{gathered} \text { F3-20 } \\ (0 \times 31 D) \\ \hline \end{gathered}$	Lower limit of curve 2	0.00 V	$0.00 \sim 10.00 \mathrm{~V}$	\bullet	
$\begin{gathered} \text { F3-21 } \\ (0 \times 31 E) \end{gathered}$	Corresponding setting of curve 2 lower limit	0.00\%	$0.00 \sim 100.00 \%$	\bullet	

$\left.\begin{array}{|c|c|l|l|l||}\hline \begin{array}{c}\text { F3-22 } \\ (0 \times 31 \mathrm{~F})\end{array} & \begin{array}{c}\text { Curve 2 } \\ \text { inflection point } \\ \text { input voltage }\end{array} & 3.00 \mathrm{~V} & 0.00 \sim 10.00 \mathrm{~V} & \bullet \\ \hline \begin{array}{c}\text { F3-23 } \\ (0 \times 320)\end{array} & \begin{array}{c}\text { Curve 2 } \\ \text { inflection point } \\ 1 \\ \text { corresponding } \\ \text { setting }\end{array} & 30.00 \% & 0.00 \sim 100.00 \%\end{array}\right]$

$\begin{gathered} \text { F3-29 } \\ (0 \times 326) \end{gathered}$	AO output selection	0	0: given frequency 1: output frequency 2: output current 3: input voltage 4: Output voltage 5: mechanical speed 6: given torque 7: Output torque 8: PID given amount 9: PID feedback 10: Output power 11: bus voltage 12: AI input value 13: HDI input value 14: Module temperature 1 15: Communication given	-	
$\begin{gathered} \text { F3-30 } \\ (0 \times 328) \end{gathered}$	AO output gain	100.0\%	25.0~200.0\%	-	
$\begin{gathered} \hline \text { F3-31 } \\ (0 \times 329) \\ \hline \end{gathered}$	AO output signal offset	0.0\%	-10.0~10.0\%	\bullet	
$\begin{gathered} \text { F3-32 } \\ (0 \times 32 \mathrm{~A}) \end{gathered}$	AO output filtering	0.010s	$0.000 \sim 6.000 \mathrm{~s}$	\bullet	

F4 Keyboard Parameter Group

Function code number	Function code name	Factory default	Setting value range and definition	Attributes	Note
F4-00 $(0 x 400)$	Keyboard MF.K selection	0	0: reverse $1:$ Jog	0: Non-keyboard control mode is invalid 1: non-keyboard control mode, stop by stop mode 2: Non-keyboard control mode stops in free mode	Keyboard STOP key (0x401) setting
	1	O			
F4-02 $(0 x 402)$	Keyboard potentiometer	0.50 V	$0.00 \sim 5.00 \mathrm{~V}$	\bullet	

$\begin{gathered} \text { F4-03 } \\ (0 \times 403) \end{gathered}$	Corresponds to the lower limit of the keyboard potentiometer	0.00	0.00~100.00\%	-	
$\begin{gathered} \text { F4-04 } \\ (0 \times 404) \end{gathered}$	Keyboard potentiometer upper limit	4.50 V	$0.00 \sim 5.00 \mathrm{~V}$	\bullet	
$\begin{gathered} \text { F4-05 } \\ (0 \times 405) \end{gathered}$	Keyboard potentiometer upper limit correspondence	100.00	0.00~100.00\%	\bullet	
$\begin{gathered} \text { F4-06 } \\ (0 \times 406) \end{gathered}$	Keyboard running display	2301	Unit digit: the first group displays $0 \sim 15$ Tens place: the second group displays $0 \sim 15$ Hundreds place: the third group displays $0 \sim 15$ Thousands: the fourth group displays $0 \sim 15$	\bullet	
$\begin{gathered} \text { F4-07 } \\ (0 \times 407) \end{gathered}$	Keyboard shutdown display	3210	Same as F4-06	-	
$\begin{gathered} \text { F4-08 } \\ (0 \times 416) \end{gathered}$	Keyboard display item settings	0000	Units: output frequency display selection 0 : target frequency 1: running frequency Hundreds place: Power display dimension 0 : percentage (\%) 1: Kilowatt (KW)	\bullet	
F4-09	Keep				
$\begin{array}{\|c\|} \hline \text { F4-10 } \\ \text { (0x408) } \\ \hline \end{array}$	Speed display factor	100.0\%	0.0~500.0\%		
$\begin{array}{\|c} \hline \text { F4-11 } \\ (0 \times 409) \\ \hline \end{array}$	Power display factor	100.0\%	0.0~500.0\%	\bullet	

F5 Motor parameter group

$\begin{gathered} \text { Function } \\ \text { code } \\ \text { number } \end{gathered}$	Function code name	Factory default	Setting value range and definition	Attributes	Note
$\begin{array}{\|c\|} \hline \text { F5-00 } \\ (0 x 500) \\ \hline \end{array}$	Motor type	0	0 : asynchronous motor (AM)	\times	
$\begin{array}{\|c\|} \hline \text { F5-01 } \\ \text { (0x501) } \\ \hline \end{array}$	Number of motor poles	4	2~98	O	
$\begin{array}{\|c\|} \hline \text { F5-02 } \\ (0 \times 502) \\ \hline \end{array}$	Motor rated power	Model settings	$0.1 \sim 1000.0 \mathrm{~kW}$	※	
$\begin{array}{\|c\|} \hline \text { F5-03 } \\ \text { (0x503) } \\ \hline \end{array}$	Motor rated frequency	Model settings	0.01~Maximum frequency	※	
$\begin{array}{\|c\|} \hline \text { F5-04 } \\ \text { (0x504) } \\ \hline \end{array}$	$\begin{gathered} \text { Motor rated } \\ \text { speed } \\ \hline \end{gathered}$	Model settings	$1 \sim 65000 \mathrm{rpm}$	※	
$\begin{array}{\|c\|} \hline \text { F5-05 } \\ \text { (0x505) } \\ \hline \end{array}$	Motor rated voltage	Model settings	$0 \sim 1500 \mathrm{~V}$	※	
$\begin{array}{\|c\|} \hline \text { F5-06 } \\ \text { (0x506) } \\ \hline \end{array}$	Motor rated current	Model settings	0.1~2000.0A	※	
$\begin{array}{\|c\|} \hline \text { F5-07 } \\ (0 \times 507) \\ \hline \end{array}$	No-load current of	Model settings	$0.1 \sim 650.0 \mathrm{~A}$	※	
$\begin{array}{\|c} \text { F5-08 } \\ (0 \times 508) \end{array}$	Stator resistance of asynchronous motor	Model settings	0.01~50.00\%	※	
$\begin{gathered} \text { F5-09 } \\ (0 \times 509) \end{gathered}$	Rotor resistance of asynchronous motor	Model settings	0.01~50.00\%	※	
$\left\|\begin{array}{c} \text { F5-10 } \\ (0 x 50 \mathrm{~A}) \end{array}\right\|$	Stator leakage inductance of asynchronous motor	Model settings	0.01~50.00\%	※	
$\left\|\begin{array}{c} \text { F5-11 } \\ (0 x 50 B) \end{array}\right\|$	Stator inductance of asynchronous motor	Model settings	0.1~2000.0\%	※	
F5-12~F5-19		Keep			

$\begin{gathered} \text { F5-20 } \\ (0 \times 514) \end{gathered}$	Motor parameter identification	0	0 : No operation 1: rotation recognition 2: static identification 3: keep	O	

F6 Vector control parameter group

$\begin{array}{\|c\|} \hline \text { Function } \\ \text { code } \\ \text { number } \end{array}$	Function code name	Factory default	Setting value range and definition	Attributes	Note
$\begin{gathered} \text { F6-00 } \\ (0 x 600) \end{gathered}$	Speed loop proportional gain 1	10.00	$0.01 \sim 100.00$	\bullet	
$\begin{gathered} \text { F6-01 } \\ (0 \times 601) \end{gathered}$	Speed loop integration time 1	0.200s	$0.000 \sim 6.000$ s	\bullet	
$\begin{array}{c\|} \hline \text { F6-02 } \\ (0 x 602) \end{array}$	Speed loop filter time 1	0.0 ms	$0.0 \sim 100.0 \mathrm{~ms}$	\bullet	
$\begin{gathered} \text { F6-03 } \\ (0 \times 603) \end{gathered}$	Speed loop switching frequency 1	0.00 Hz	$[\mathrm{F} 6-07] \sim \text { Upper }$ frequency	\bullet	
$\begin{gathered} \text { F6-04 } \\ (0 \times 604) \end{gathered}$	Speed loop proportional gain 2	10.00	$0.01 \sim 100.00$	\bullet	
$\begin{gathered} \text { F6-05 } \\ (0 \times 605) \end{gathered}$	Speed loop integration time 2	0.200s	$0.000 \sim 6.000$ s	\bullet	
$\begin{array}{c\|} \hline \text { F6-06 } \\ \text { (0x606) } \\ \hline \end{array}$	Speed loop filter time 2	0.0 ms	$0.0 \sim 100.0 \mathrm{~ms}$	\bullet	
$\begin{gathered} \text { F6-07 } \\ (0 \times 607) \end{gathered}$	Speed loop switching frequency 1	5.00 Hz	$0.00 \sim[\mathrm{~F} 6-03]$	\bullet	
$\begin{gathered} \text { F6-08 } \\ (0 \times 608) \end{gathered}$	Electric torque limit	180.0\%	0.0~250.0\%	\bullet	
$\begin{gathered} \text { F6-09 } \\ \text { (0x609) } \end{gathered}$	Generation torque limit	180.0\%	0.0~250.0\%	\bullet	

$\begin{gathered} \text { F6-10 } \\ (0 \mathrm{x} 60 \mathrm{~A}) \end{gathered}$	Proportional gain of current loop straight axis	1.000	$0.001 \sim 4.000$	\bullet
$\begin{gathered} \text { F6-11 } \\ (0 \mathrm{x} 60 \mathrm{~B}) \end{gathered}$	Current loop straight axis integral gain	1.000	$0.001 \sim 4.000$	-
$\begin{gathered} \text { F6-12 } \\ (0 \times 60 C) \end{gathered}$	Current loop quadrature axis proportional gain	1.000	$0.001 \sim 4.000$	\bullet
$\begin{gathered} \text { F6-13 } \\ (0 \times 60 \mathrm{D}) \end{gathered}$	Current loop quadrature axis integral gain	1.000	$0.001 \sim 4.000$	-
$\begin{array}{\|c} \hline \text { F6-14 } \\ \text { (0x60E) } \end{array}$	Keep			
$\begin{gathered} \text { F6-15 } \\ (0 \times 60 F) \end{gathered}$	Vector electric slip compensation	100.0\%	$0.0 \sim 250.0 \%$	-
F6-16 ~F6-21				
$\begin{gathered} \text { F6-22 } \\ (0 \times 616) \end{gathered}$	Overexcitation braking gain	100.0\%	$0.0 \sim 500.0 \%$	\bigcirc
$\begin{gathered} \text { F6-23 } \\ (0 \times 617) \end{gathered}$	Over-excitation braking limit	100.0\%	$0.0 \sim 250.0 \%$	\bigcirc
$\begin{gathered} \text { F6-24 } \\ (0 \times 618) \end{gathered}$	Vector control energy saving function	0	0: off 1: open	\bigcirc
$\begin{array}{\|c\|} \hline \text { F6-25 } \\ (0 \times 619) \\ \hline \end{array}$	Energy saving control gain	50.0\%	0.0~80.0\%	\bullet
$\begin{gathered} \text { F6-26 } \\ (0 \times 61 \mathrm{~A}) \end{gathered}$	Energy-saving control low-pass filtering	0.010 s	$0.000 \sim 6.000 \mathrm{~s}$	\bullet

F6-27 $(0 x 61 B)$	Motor constant power zone power limit	150.0%	$0.0 \sim 250.0 \%$	\bullet
F6-28~F6-69	Keep			

F8 V/F control parameter group

Function code number	Function code name	Factory default	Setting value range and definition	Attri butes	Note
$\left\|\begin{array}{c} \text { F8-00 } \\ (0 x 0800) \end{array}\right\|$	$\begin{aligned} & \text { Linear V/F } \\ & \text { curve } \\ & \text { selection } \end{aligned}$	0	$\begin{aligned} & \hline \text { 0: straight V/F; } \\ & \text { 1-9: 1.1-1.9 power V/F; } \\ & \text { 10: square V/F; } \\ & \text { 11: Multi-point V/F } \\ & \text { (F8-01 ~ F8-10); } \\ & \hline \end{aligned}$	\bigcirc	
$\begin{array}{\|c\|} \hline \text { F8-01 } \\ (0 x 0801) \end{array}$	$\begin{gathered} \text { V/F voltage } \\ \text { V1 } \end{gathered}$	3.0\%	$0.0 \sim 100.0 \%$	O	
$\begin{array}{\|c\|} \hline \text { F8-02 } \\ (0 x 0802) \end{array}$	$\begin{gathered} \mathrm{V} / \mathrm{F} \\ \text { frequency } \mathrm{F} 1 \end{gathered}$	1.00 Hz	$0.00 \sim$ Maximum frequency	O	
F8-03 $(0 x 0803)$	$\begin{gathered} \text { V/F voltage } \\ \text { V2 } \end{gathered}$	28.0\%	0.0~100.0\%	O	
$\begin{array}{\|c\|} \hline \text { F8-04 } \\ (0 x 0804) \end{array}$	$\begin{gathered} \mathrm{V} / \mathrm{F} \\ \text { frequency } \mathrm{F} 2 \end{gathered}$	10.00 Hz	0.00~Maximum frequency	\bigcirc	
F8-05 $(0 x 0805)$	$\begin{gathered} \text { V/F voltage } \\ \text { V3 } \end{gathered}$	55.0\%	0.0~100.0\%	\bigcirc	
F8-06 (0x0806)	$\begin{gathered} \mathrm{V} / \mathrm{F} \\ \text { frequency } \mathrm{F} 3 \end{gathered}$	25.00 Hz	$0.00 \sim$ Maximum frequency	\bigcirc	
F8-07 $(0 x 0807)$	$\begin{aligned} & \text { V/F voltage } \\ & \text { V4 } \end{aligned}$	78.0\%	0.0~100.0\%	O	
F8-08 $(0 x 0808)$	$\begin{gathered} \mathrm{V} / \mathrm{F} \\ \text { frequency } \mathrm{F} 4 \end{gathered}$	37.50 Hz	$0.00 \sim$ Maximum frequency	O	
F8-09 $(0 x 0809)$	$\begin{aligned} & \text { V/F voltage } \\ & \text { V5 } \end{aligned}$	100.0\%	0.0~100.0\%	\bigcirc	
$\left\lvert\, \begin{gathered} \text { F8-10(0x } \\ 080 \mathrm{~A}) \end{gathered}\right.$	V/F frequency F5	50.00 Hz	$0.00 \sim$ Maximum frequency	O	
$\left\lvert\, \begin{gathered} \text { F8-11 } \\ (0 x 080 B) \end{gathered}\right.$	Output voltage percentage	100.0\%	25.0~120.0\%	\bigcirc	

$\begin{array}{\|c\|} \hline \text { F8-12 } \\ (0 x 080 C) \end{array}$	Torque boost	0.0\%	$0.0 \sim 30.0 \%$	\bullet	
$\begin{array}{\|c\|} \hline \text { F8-13 } \\ (0 \times 080 \mathrm{D} \\) \\ \hline \end{array}$	Cut-off frequency of torque boost	100.0\%	$0.0 \sim 100.0 \%$	-	
$\left\lvert\, \begin{gathered} \text { F8-14 } \\ (0 x 080 \mathrm{E}) \end{gathered}\right.$	V / F slip compensation gain	100.0\%	0.0~200.0\%	-	
$\left(\begin{array}{c} \text { F8-15 } \\ (0 \times 080 F) \end{array}\right.$	V/F slip compensation limit	100.0\%	0.0~300.0\%	\bullet	
$\begin{gathered} \text { F8-16 } \\ (0 \times 0810) \end{gathered}$	V/F slip compensation filtering	0.200 s	$0.000 \sim 6.000 \mathrm{~s}$	-	
$\begin{gathered} \text { F8-17 } \\ (0 x 0811) \end{gathered}$	Oscillation suppression gain	100.0\%	0.0~900.0\%	-	
$\begin{gathered} \text { F8-18 } \\ (0 \times 0812) \end{gathered}$	Keep				
$\begin{gathered} \text { F8-19 } \\ (0 \mathrm{x} 0813) \end{gathered}$	V/F automatic energy saving control	0	0: off 1: open	\bigcirc	
$\begin{gathered} \text { F8-20 } \\ (0 \times 0814) \end{gathered}$	Lower limit of energy-saving step-down frequency	15.00 Hz	$0.0 \sim 50.00 \mathrm{~Hz}$	\bigcirc	
$\begin{gathered} \mathrm{F} 8-21 \\ (0 \mathrm{x} 0815) \end{gathered}$	Energy-savin g step-down voltage lower limit	50.0\%	$20.0 \sim 100.0 \%$	\bigcirc	
$\begin{gathered} \mathrm{F} 8-22 \\ (0 \mathrm{x} 0816) \end{gathered}$	Energy-savin g buck voltage regulation rate	$\begin{gathered} 0.010 \mathrm{~V} / \mathrm{M} \\ \mathrm{~S} \end{gathered}$	$0.000 \sim 0.200 \mathrm{~V} / \mathrm{MS}$	\bullet	
$\begin{gathered} \mathrm{F} 8-23 \\ (0 \mathrm{x} 0817) \end{gathered}$	Energy saving buck voltage pick-up rate	$\begin{gathered} 0.200 \mathrm{~V} / \mathrm{M} \\ \mathrm{~S} \end{gathered}$	$0.000 \sim 2.000 \mathrm{~V} / \mathrm{MS}$	\bullet	
F8-24~F8-29		Keep			

F9 Enhanced Function Parameter Group

Function code number	Function code name	Factory default	Setting value range and definition	Attributes	Note
$\begin{array}{\|c\|} \hline \text { F9-00 } \\ (0 \times 0900) \\ \hline \end{array}$	Jump frequency 1	0.00 Hz	$0.00 \sim$ Maximum frequency	\bullet	
$\left\lvert\, \begin{gathered} \text { F9-01 } \\ (0 x 0901) \end{gathered}\right.$	Jump frequency amplitude 1	0.00 Hz	$0.00 \sim$ Maximum frequency	\bullet	
$\begin{array}{\|c} \hline \text { F9-02 } \\ (0 x 0902) \end{array}$	Jump frequency 2	0.00 Hz	$0.00 \sim$ Maximum frequency	\bullet	
$\left\lvert\, \begin{gathered} \text { F9-03 } \\ (0 \times 0903) \end{gathered}\right.$	Jump frequency amplitude 2	0.00 Hz	$0.00 \sim$ Maximum frequency	\bullet	
F9-04 ~F9-07		Keep			
$\left\lvert\, \begin{gathered} \text { F9-08 } \\ (0 x 0908) \end{gathered}\right.$	Swing frequency control	0	0 : Swing frequency is invalid 1: Swing frequency is valid	\bullet	
$\left\lvert\, \begin{gathered} \text { F9-09 } \\ (0 \times 0909) \end{gathered}\right.$	Swing frequency amplitude control	0	0 : relative center frequency 1: Relative maximum frequency	\bullet	
F9-10	Keep				
$\left\lvert\, \begin{gathered} \text { F9-11 } \\ (0 \times 090 B) \end{gathered}\right.$	Swing frequency amplitude	10.0\%	$0.0 \sim 100.0 \%$	\bullet	
$\left\lvert\, \begin{gathered} \text { F9-12 } \\ (0 x 090 C) \end{gathered}\right.$	Kick frequency amplitude	10.0\%	$0.0 \sim 50.0 \%$	\bullet	
$\left\lvert\, \begin{gathered} \text { F9-13 } \\ (0 x 090 D) \end{gathered}\right.$	Swing frequency rise time	5.00 s	$0.00 \sim 650.00 \mathrm{~s}$	\bullet	
$\left(\begin{array}{c} \mathrm{F} 9-14 \\ (0 \mathrm{x} 090 \mathrm{E}) \end{array}\right.$	Swing frequency fall time	5.00 s	$0.00 \sim 650.00 \mathrm{~s}$	\bullet	

$\left\lvert\, \begin{gathered} \text { F9-15 } \\ (0 \mathrm{x} 090 \mathrm{~F}) \end{gathered}\right.$	Fan control	1	0: Fan runs after inverter is powered on 1: Shutdown is related to temperature, and running is running 2: The shutdown fan stops, and the operation is related to temperature	\bullet	
$\left\|\begin{array}{c} \text { F9-16 } \\ (0 x 0910) \end{array}\right\|$	Energy consumption braking enabled	0	$\begin{aligned} & \text { 0: off } \\ & \text { 1: open } \end{aligned}$	-	
$\left\lvert\, \begin{gathered} \text { F9-17 } \\ (0 x 0911) \end{gathered}\right.$	Energy consumption braking action voltage	135.0\%	115.0\% ~ 150.0%	\bullet	
F9-18 (0x0912)	Energy use brake usage	10.0\%	0.0~100.0\%		
F9-19~F9-20		Keep			

FA Protection and fault parameter group

Function code number	Function code name	Factory default	Setting value range and definition	Attributes	Note
FA-00 $(0 x A 00)$	Overcurrent suppression function	0	0: Suppression is always effective $1:$ acceleration/ deceleration is valid, constant speed is invalid	\bullet	
FA-01 $(0 x A 01)$	Overcurrent suppression point	160.0%	$0.0 \sim 300.0 \%$	\bullet	
FA-02 $(0 x A 02)$	Overcurrent suppression gain	100.0%	$0.0 \sim 500.0 \%$	\bullet	
FA-03	Current hardware protection settings	0001	Unit place: current-by-wave current limiting (CBC) $0:$ off $1:$ open Tens place: keep	O	

			Hundreds: OC protection interference suppression 0: off 1: First level interference suppression 2: Secondary interference suppression Thousands: keep		
FA	04~FA-05	Keep			
$\begin{array}{\|\|c\|c} \text { FA-06 } \\ (0 x A 06) \end{array}$	Bus overvoltage suppression function	0012	Unit place: overvoltage suppression control 0: Forbidden 1: Deceleration is effective 2: Enable during acceleration and deceleration Tenth place: overexcitation control 0: off 1: open Hundreds and Thousands: keep	O	
$\left\lvert\, \begin{gathered} \text { FA-07 } \\ (0 x A 07) \end{gathered}\right.$	Bus overvoltage suppression point	130.0\%	$110.0 \sim 150.0 \%$	※	
$\begin{array}{\|\|c\|c} \text { FA-08 } \\ (0 x A 08) \end{array}$	Bus overvoltage suppression gain	100.0\%	0.0 $\sim 500.0 \%$	\bullet	
$\begin{array}{\|\|c\|c} \text { FA-09 } \\ (0 x A 09) \end{array}$	Bus undervoltage suppression function	0	0 : Forbidden 1: enable	O	
$\left\lvert\, \begin{gathered} \text { FA-10 } \\ (0 x A 0 A) \end{gathered}\right.$	Bus undervoltage suppression point	80.0\%	60.0~90.0\%	※	

$\begin{gathered} \text { FA-11 } \\ (0 x A 0 B) \end{gathered}$	Bus undervoltage suppression gain	100.0\%	0.0~500.0\%	\bullet	
$\begin{gathered} \text { FA-12 } \\ (0 x A 0 C) \end{gathered}$	Bus undervoltage protection point	60.0\%	60.0~90.0\%	※	
$\begin{gathered} \text { FA-13 } \\ (0 x A 0 D) \\ \hline \end{gathered}$	Keep				
$\begin{gathered} \text { FA-14 } \\ (0 \times \mathrm{A} 0 \mathrm{E}) \end{gathered}$	Power-to-ground short-circuit detection	0	$0:$ off $1:$ open	\bigcirc	
FA-15 (0xA0F)	Phase loss protection	0011	Unit place: output phase loss protection 0 : off 1: open Tens place: input phase loss protection 0 : off 1: enable alarm 2: open failure Hundreds and thousands: reserved	\bigcirc	
$\begin{array}{\|c\|} \hline \text { FA-16 } \\ \text { (0xA10) } \end{array}$	Motor overload protection factor	100.0\%	$0.0 \sim 250.0 \%$	\bigcirc	

$\begin{aligned} & \text { FA-17 } \\ & \text { (0xA11) } \end{aligned}$	Load warning checkout setting	0000	Unit place: checkout selection (protection 1) 0: No detection 1: detection load is too large 2: Only at constant speed detects excessive load 3: detection of insufficient load 4: Detects insufficient load only at constant speed Tens place: Alarm selection 0: Alarm, continue running 1: fault protection action and free stop Hundreds: Check Out Selection (Protection 2) 0: No detection 1: detection load is too large 2: Only at constant speed detects excessive load 3: detection of insufficient load 4: Detects insufficient load only at constant speed Thousands: Alarm selection 0: Alarm, continue running 1: fault protection action and free stop	O	
$\begin{array}{\|c\|} \hline \text { FA-18 } \\ \text { (0xA12) } \\ \hline \end{array}$	Load early detection level 1	130.0\%	0.0~200.0\%	O	
$\begin{array}{\|c\|} \hline \text { FA-19 } \\ \text { (0xA13) } \\ \hline \end{array}$	Load warning detection time 1	5.0s	$0.0 \sim 60.0 \mathrm{~s}$	O	

$\begin{gathered} \text { FA-20 } \\ (0 x A 14) \end{gathered}$	Load early detection level 2	30.0\%	$0.0 \sim 200.0 \%$	\bigcirc	
$\begin{aligned} & \text { FA-21 } \\ & \text { (0xA15) } \end{aligned}$	Load warning detection time 2	5.0s	$0.0 \sim 60.0 \mathrm{~s}$	\bigcirc	
$\begin{gathered} \text { FA-22 } \\ (0 x A 16) \end{gathered}$	Keep				
$\begin{aligned} & \text { FA- } 23 \\ & (0 \times A 17) \end{aligned}$	Excessive speed deviation protection action	0000	Unit place: checkout selection 0 : No detection 1: only at constant speed 2: Always detect Tens place: Alarm selection 0 : Free stop and report fault 1: Alarm and continue operation Hundreds and thousands: reserved	\bigcirc	
$\begin{aligned} & \text { FA-24 } \\ & (0 x A 18) \end{aligned}$	Excessive speed deviation detection threshold	10.0\%	$0.0 \sim 60.0 \%$	\bigcirc	
$\begin{aligned} & \text { FA-25 } \\ & (0 \times A 19) \end{aligned}$	Excessive speed deviation detection time	2.0s	$0.0 \sim 60.0 \mathrm{~s}$	\bigcirc	
$\left\|\begin{array}{c} \text { FA- } 26 \\ (0 x A 1 A) \end{array}\right\|$	Rapid protection action	0000	Unit place: checkout selection 0 : No detection 1: only at constant speed 2: Always detect Tens place: Alarm selection 0 : Free stop and report fault 1: Alarm and continue operation Hundreds and thousands: reserved	\bigcirc	

$\left.\begin{array}{||c|c|c|l|c|c||}\hline \begin{array}{c}\text { FA-27 } \\ (0 x A 1 B)\end{array} & \begin{array}{c}\text { Fast detection } \\ \text { threshold }\end{array} & 110.0 \% & 0.0 \sim 150.0 \% & \bigcirc & \\ \hline \begin{array}{c}\text { FA-28 } \\ (0 x A 1 C)\end{array} & \begin{array}{c}\text { Fast detection } \\ \text { time }\end{array} & 0.010 \mathrm{~s} & 0.000 \sim 2.000 \mathrm{~s}\end{array}\right]$

$\begin{array}{\|c\|} \hline \text { FA-48 } \\ (0 x A 30) \end{array}$	Fault output terminal status	--	See output terminal state diagram	\times	
$\begin{array}{\|c\|} \hline \text { FA-49 } \\ (0 x A 31) \end{array}$	Previous failure type	--	See fault message code table for details	\times	
$\left\|\begin{array}{c} \text { FA-50 } \\ (0 x A 32) \end{array}\right\|$	Frequency of previous fault operation	--	$0.00 \sim$ Maximum frequency	\times	
$\begin{array}{\|c\|} \hline \text { FA-51 } \\ \text { (0xA33) } \\ \hline \end{array}$	Last fault output voltage	--	$0 \sim 1500 \mathrm{~V}$	\times	
$\begin{array}{\|c\|} \hline \text { FA-52 } \\ \text { (0xA34) } \\ \hline \end{array}$	Last fault output current	--	0.1~2000.0A	\times	
$\begin{array}{\|c\|} \hline \text { FA-53 } \\ \text { (0xA35) } \\ \hline \end{array}$	Last faulted bus voltage	--	0~3000V	\times	
$\left\|\begin{array}{c} \text { FA-54 } \\ (0 x A 36) \end{array}\right\|$	Last failed module temperature	--	$0 \sim 100^{\circ} \mathrm{C}$	\times	
$\left\|\begin{array}{c} \text { FA-55 } \\ (0 x A 37) \end{array}\right\|$	Status of the previous fault inverter	--	Unit place: running direction 0 : forward 1: reverse Tens place: running status 0: shutdown 1: steady speed 2: speed up 3: slow down Hundreds and thousands: reserved	\times	
$\begin{array}{\|c\|} \hline \text { FA-56 } \\ \text { (0xA38) } \\ \hline \end{array}$	Last fault input terminal status	--	See input terminal state diagram	\times	
$\begin{array}{\|c\|} \hline \text { FA-57 } \\ \text { (0xA39) } \\ \hline \end{array}$	Last fault output terminal status	--	See output terminal state diagram	\times	
$\begin{array}{\|c\|} \hline \text { FA-58 } \\ \text { (0xA3A) } \end{array}$	First two failure types	--	See fault message code table for details	\times	
$\begin{array}{\|c\|} \hline \text { FA-59 } \\ (0 x A 3 B) \end{array}$	First three failure types	--	See fault message code table for details	\times	

Group Fb: PID control parameter group

Function code	Function code name	Factory default	Setting value range and definition	Attributes	Note

$\begin{gathered} \mathrm{Fb}-00 \\ (0 \mathrm{xB} 00) \end{gathered}$	PID controller given signal source	0	0: Keyboard numeric PID given 1: keyboard potentiometer given 2: Analog AI given 3: Pulse HDI given 4: RS485 communication given 5: Optional card 6: terminal selection	-	
$\begin{aligned} & \mathrm{Fb}-01 \\ & (0 \mathrm{xB} 01) \end{aligned}$	Keyboard number PID given/ feedback	50.0\%	$0.00 \sim 100.0 \%$	\bullet	
$\begin{gathered} \mathrm{Fb}-02 \\ (0 \mathrm{xB} 02) \end{gathered}$	$\begin{aligned} & \text { PID given } \\ & \text { acceleration } \\ & \text { and } \\ & \text { deceleration } \\ & \text { time } \end{aligned}$	1.00 s	$0.00 \sim 60.00 \mathrm{~s}$	\bullet	
$\begin{gathered} \mathrm{Fb}-03 \\ (0 \mathrm{xB} 03) \end{gathered}$	PID controller feedback signal source	2	$\begin{array}{\|l\|} \hline \text { 0: Keyboard numeric PID } \\ \text { given } \\ \text { 1: keyboard } \\ \text { potentiometer given } \\ \text { 2: Analog AI given } \\ \text { 3: Terminal pulse HDI } \\ \text { reference } \\ \text { 4: RS485 communication } \\ \text { given } \\ \text { 5: Optional card } \\ \text { 6: terminal selection } \\ \hline \end{array}$	-	
$\begin{gathered} \mathrm{Fb}-04 \\ (0 \mathrm{xB} 04) \end{gathered}$	Low-pass filtering time of feedback signal	0.010s	$0.000 \sim 6.000 \mathrm{~s}$	\bullet	
$\begin{array}{\|c} \hline \mathrm{Fb}-05 \\ (0 \mathrm{xB} 05) \end{array}$	Feedback signal gain	1.00	$0.00 \sim 10.00$	\bullet	
$\begin{gathered} \mathrm{Fb}-06 \\ (0 \mathrm{OB} 06) \end{gathered}$	Maximum feedback signal range	100.0	$0 \sim 100.0$	\bullet	

$\begin{gathered} \mathrm{Fb}-07 \\ (0 x B 07) \end{gathered}$	PID control selection	0100	Unit place: feedback characteristic selection 0 : Positive characteristic 1: negative characteristics Tens place: closed-loop bypass hold output 0: Output is cleared when closed loop bypass 1: Output hold when closed loop bypass Hundreds: alignment selection 0 : non-center aligned 1: center-aligned Thousands: Differential Adjustment Properties 0 : Differentiate the deviation 1: Differentiate feedback	\bullet	
$\begin{array}{\|c\|} \hline \mathrm{Fb}-08 \\ (0 \mathrm{xB08}) \end{array}$	PID preset output	100.0\%	0.0~100.0\%	\bullet	
$\begin{gathered} \mathrm{Fb}-09 \\ (0 x B 09) \end{gathered}$	PID preset output running time	0.0s	$0.0 \sim 6500.0 \mathrm{~s}$	\bullet	
$\left.\left\lvert\, \begin{array}{c} \mathrm{Fb}-10 \\ (0 \mathrm{xB} 0 \mathrm{~A}) \end{array}\right.\right)$	PID control deviation limit	0.0\%	0.0~100.0\%	\bullet	
$\begin{array}{\|c\|} \hline \mathrm{Fb}-11 \\ (0 \mathrm{xB} 0 \mathrm{~B}) \end{array}$	Proportional gain P1	0.100	0.000~8.000	\bullet	
$\begin{array}{\|c\|} \hline \mathrm{Fb}-12 \\ (0 \mathrm{xB} 0 \mathrm{C}) \end{array}$	Integration time I1	1.0s	$0.0 \sim 600.0 \mathrm{~s}$	-	
$\begin{array}{\|c\|} \hline \mathrm{Fb}-13 \\ (0 \mathrm{xB} 0 \mathrm{D}) \end{array}$	Differential gain D1	0.000s	$0.000 \sim 6.000$ s	\bullet	
$\begin{array}{\|c} \mathrm{Fb}-14 \\ (0 \mathrm{xB} 0 \mathrm{E}) \end{array}$	Proportional gain P2	0.100	0.000~8.000	\bullet	
$\begin{array}{\|c\|} \hline \mathrm{Fb}-15 \\ (0 \mathrm{xB} 0 \mathrm{~F}) \\ \hline \end{array}$	Integration time I2	1.0s	$0.0 \sim 600.0 \mathrm{~s}$	\bullet	
$\begin{array}{\|c\|} \hline \mathrm{Fb}-16 \\ (0 x B 10) \end{array}$	$\begin{gathered} \text { Differential } \\ \text { gain D2 } \end{gathered}$	0.000s	0.000 ~ 6.000 s	\bullet	

$\begin{gathered} \mathrm{Fb}-17 \\ (0 \mathrm{xB} 11) \end{gathered}$	PID parameter switching conditions	0	0: Do not switch 1: X terminal switching 2: switch based on deviation	\bullet	
$\begin{array}{\|c} \mathrm{Fb}-18 \\ (0 \mathrm{xB} 12) \end{array}$	Low switching deviation	20.0\%	$0.0 \sim 100.0 \%$	\bullet	
$\begin{gathered} \mathrm{Fb}-19 \\ (0 \mathrm{xB} 13) \end{gathered}$	High switching deviation	80.0\%	0.0~100.0\%	\bullet	
$\begin{gathered} \mathrm{Fb}-20 \\ (0 \times B 14) \end{gathered}$	Keep				
$\begin{array}{\|c\|} \hline \mathrm{Fb}-21 \\ (0 \mathrm{xB} 15) \end{array}$	Differential clipping	5.0\%	0.0~100.0\%	\bullet	
$\begin{array}{\|c\|} \hline \mathrm{Fb}-22 \\ (0 \times B 16) \end{array}$	PID output upper limit	100.0\%	0.0~100.0\%	\bullet	
$\begin{array}{\|c} \hline \mathrm{Fb}-23 \\ (0 \mathrm{xB} 17) \end{array}$	PID output lower limit	0.0\%	$0.0 \sim[\mathrm{Fb}-22]$	\bullet	
$\begin{array}{\|c\|} \hline \text { Fb-24 } \\ (0 \times B 18) \\ \hline \end{array}$	PID output filter time	0.0s	$0.000 \sim 6.000 \mathrm{~s}$	\bullet	
$\begin{array}{\|c} \mathrm{Fb}-25 \\ (0 \mathrm{xB} 19) \end{array}$	Feedback disconnection detection time	1.0s	$0.0 \sim 120.0 \mathrm{~s}$	\bullet	
$\begin{gathered} \mathrm{Fb}-26 \\ (0 \mathrm{xB} 1 \mathrm{~A}) \end{gathered}$	Feedback disconnection action selection	0	0: Continue without failure 1: Stop and report failure 2: keep running, output alarm 3: Run at current frequency and alarm	\bullet	
$\left(\begin{array}{c} \mathrm{Fb}-27 \\ (0 \times B 1 B) \end{array}\right.$	Disconnection alarm upper limit	100.0\%	0.0~100.0\%	\bullet	
$\left\lvert\, \begin{gathered} \mathrm{Fb}-28 \\ (0 \times B 1 C) \end{gathered}\right.$	Disconnection alarm lower limit	0.0\%	$0.0 \sim 100.0 \%$	\bullet	
$\begin{array}{\|\|c\|} \hline \mathrm{Fb}-29 \\ (0 \times B 1 \mathrm{D}) \\ \hline \end{array}$	Sleep selection	0	$\begin{array}{\|l\|} \hline 0: \text { off } \\ 1: \text { open } \\ \hline \end{array}$	\bullet	
$\begin{array}{\|c} \hline \mathrm{Fb}-30 \\ (0 \times \mathrm{B} 1 \mathrm{E}) \end{array}$	Sleep frequency	30.00 Hz	$0.00 \sim 50.00 \mathrm{~Hz}$	\bullet	

Fb-31 $(0 \times B 1 F)$	Sleep delay	3.0 S	$0.0 \sim 3600.0 \mathrm{~S}$	\bullet	
Fb-32 $(0 \times B 20)$	Wake-up bias	5.0%	$0.0 \sim 50.0 \%$	\bullet	
Fb-33 $(0 x B 21)$	Wake-up delay	0.0 S	$0.0 \sim 60.0 \mathrm{~S}$	\bullet	

Fc group: Multi-speed, PLC function parameter group

Functio n code number	Function code name	Factory default	Setting value range and definition	Attri butes	Note
$\begin{array}{\|c\|} \hline \text { FC-00 } \\ (0 x C 00) \\ \hline \end{array}$	Multi-band frequency 1	10.00 Hz	$0.00 \sim$ Maximum frequency	\bullet	
$\begin{array}{\|c\|} \hline F C-01 \\ (0 x C 01) \\ \hline \end{array}$	Multi-band frequency 2	20.00 Hz	0.00~Maximum frequency	\bullet	
$\begin{array}{\|c\|} \hline \text { FC-02 } \\ (0 x C 02) \\ \hline \end{array}$	Multi-band frequency 3	30.00 Hz	$0.00 \sim$ Maximum frequency	\bullet	
$\begin{array}{\|c\|} \hline \text { FC-03 } \\ (0 x C 03) \\ \hline \end{array}$	Multi-band frequency 4	40.00 Hz	$0.00 \sim$ Maximum frequency	\bullet	
$\begin{array}{\|c\|} \hline \text { FC-04 } \\ (0 x C 04) \\ \hline \end{array}$	Multi-band frequency 5	50.00 Hz	0.00 \sim Maximum frequency	\bullet	
$\begin{array}{\|c\|} \hline \text { FC-05 } \\ (0 x C 05) \\ \hline \end{array}$	Multi-band frequency 6	40.00 Hz	0.00 \sim Maximum frequency	\bullet	
$\begin{array}{\|c\|} \hline \text { FC-06 } \\ (0 x C 06) \\ \hline \end{array}$	Multi-band frequency 7	30.00 Hz	$0.00 \sim$ Maximum frequency	\bullet	
$\begin{array}{\|c\|} \hline \text { FC-07 } \\ (0 x C 07) \\ \hline \end{array}$	Multi-band frequency 8	20.00 Hz	0.00 \sim Maximum frequency	\bullet	
$\begin{array}{\|c\|} \hline \text { FC-08 } \\ (0 x C 08) \\ \hline \end{array}$	Multi-band frequency 9	10.00Hz	$0.00 \sim$ Maximum frequency	\bullet	
$\begin{array}{\|c\|} \hline \text { FC-09 } \\ (0 x C 09) \\ \hline \end{array}$	Multi-band frequency 10	20.00 Hz	$0.00 \sim$ Maximum frequency	\bullet	
$\left.\begin{array}{\|\|c\|} \hline \text { FC-10 } \\ (0 x C 0 A \end{array} \right\rvert\,$	Multi-band frequency 11	30.00 Hz	$0.00 \sim$ Maximum frequency	\bullet	
$\begin{array}{\|c\|} \hline \text { FC-11 } \\ (0 x C 0 B) \end{array}$	Multi-band frequency 12	40.00 Hz	$0.00 \sim$ Maximum frequency	\bullet	
$\begin{array}{\|c\|} \hline \text { FC-12 } \\ (0 \mathrm{xCOC}) \end{array}$	Multi-band frequency 13	50.00 Hz	$0.00 \sim$ Maximum frequency	\bullet	
$\begin{array}{\|c\|} \hline \text { FC-13 } \\ \text { (0xC0D } \\ \hline \end{array}$	Multi-band frequency 14	40.00 Hz	$0.00 \sim$ Maximum frequency	\bullet	

$\begin{array}{\|c} \hline \text { FC-14 } \\ (0 x C 0 E) \\ \hline \end{array}$	Multi-band frequency 15	30.00 Hz	$0.00 \sim$ Maximum frequency	\bullet	
$\left\lvert\, \begin{gathered} \text { FC-15 } \\ (0 x C 0 F) \end{gathered}\right.$	Multi-band frequency operation mode selection	0000	Unit place: circular mode 0 : single cycle 1: continuous loop 2: Keep the final value after a single cycle Tens place: timing unit 0 : seconds 1 point 2 hours Hundreds: power-down storage mode 0 : Do not store 1: storage Thousands: start way 0 : Re-run from the first stage 1: Re-run from the downtime phase 2: Continue to run with the remainder of the downtime phase	-	
$\left\lvert\, \begin{gathered} \mathrm{FC}-16 \\ (0 \mathrm{xC} 10) \end{gathered}\right.$	Multi-band frequency 1 runtime	10.0	$0.0 \sim 6500.0(\mathrm{~s} / \mathrm{m} / \mathrm{h})$	-	
$\begin{gathered} \text { FC-17 } \\ (0 \mathrm{xC} 11) \end{gathered}$	Multi-band frequency 2 runtime	10.0	$0.0 \sim 6500.0(\mathrm{~s} / \mathrm{m} / \mathrm{h})$	-	
$\left\lvert\, \begin{gathered} \text { FC-18 } \\ (0 \mathrm{xC} 12) \end{gathered}\right.$	Multi-band frequency 3 runtime	10.0	$0.0 \sim 6500.0(\mathrm{~s} / \mathrm{m} / \mathrm{h})$	-	
$\left\lvert\, \begin{gathered} \text { FC-19 } \\ (0 x C 13) \end{gathered}\right.$	Multi-band frequency 4 runtime	10.0	$0.0 \sim 6500.0(\mathrm{~s} / \mathrm{m} / \mathrm{h})$	-	
$\left\lvert\, \begin{gathered} \text { FC-20 } \\ (0 \mathrm{xCl} 4) \end{gathered}\right.$	Multi-band frequency 5 runtime	10.0	$0.0 \sim 6500.0(\mathrm{~s} / \mathrm{m} / \mathrm{h})$	\bullet	
$\left\lvert\, \begin{gathered} \text { FC-21 } \\ (0 \mathrm{xC} 15) \end{gathered}\right.$	Multi-band frequency 6 runtime	10.0	$0.0 \sim 6500.0(\mathrm{~s} / \mathrm{m} / \mathrm{h})$	\bullet	

$\left\|\begin{array}{c} \mathrm{FC}-22 \\ (0 \mathrm{xC} 16) \end{array}\right\|$	Multi-band frequency 7 runtime	10.0	$0.0 \sim 6500.0(\mathrm{~s} / \mathrm{m} / \mathrm{h})$	-	
$\left\|\begin{array}{c} \mathrm{FC}-23 \\ (0 \mathrm{xC} 17) \end{array}\right\|$	Multi-band frequency 8 runtime	10.0	$0.0 \sim 6500.0(\mathrm{~s} / \mathrm{m} / \mathrm{h})$	\bullet	
$\left\|\begin{array}{c} \mathrm{FC}-24 \\ (0 \mathrm{xC} 18) \end{array}\right\|$	Multi-band frequency 9 runtime	10.0	$0.0 \sim 6500.0(\mathrm{~s} / \mathrm{m} / \mathrm{h})$	\bullet	
$\left\|\begin{array}{c} \text { FC-25 } \\ (0 \mathrm{xC} 19) \end{array}\right\|$	Multi-band frequency 10 runtime	10.0	$0.0 \sim 6500.0(\mathrm{~s} / \mathrm{m} / \mathrm{h})$	\bullet	
$\left\|\begin{array}{c} \text { FC-26 } \\ (0 x C 1 A \end{array}\right\|$)	Multi-band frequency 11 runtime	10.0	$0.0 \sim 6500.0(\mathrm{~s} / \mathrm{m} / \mathrm{h})$	\bullet	
$\left\|\begin{array}{c} \mathrm{FC}-27 \\ (0 \mathrm{xClB}) \end{array}\right\|$	Multi-band frequency 12 runtime	10.0	$0.0 \sim 6500.0(\mathrm{~s} / \mathrm{m} / \mathrm{h})$	\bullet	
$\left\|\begin{array}{c} \mathrm{FC}-28 \\ (0 \mathrm{xClC}) \end{array}\right\|$	Multi-band frequency 13 runtime	10.0	$0.0 \sim 6500.0(\mathrm{~s} / \mathrm{m} / \mathrm{h})$	\bullet	
FC-29 (0xC1D)	Multi-band frequency 14 runtime	10.0	$0.0 \sim 6500.0(\mathrm{~s} / \mathrm{m} / \mathrm{h})$	\bullet	
$\left\|\begin{array}{c} \text { FC-30 } \\ (0 x C 1 E) \end{array}\right\|$	Multi-band frequency 15 runtime	10.0	$0.0 \sim 6500.0(\mathrm{~s} / \mathrm{m} / \mathrm{h})$	\bullet	
$\begin{array}{\|c\|} \hline \mathrm{FC}-31 \\ (0 \mathrm{xClF}) \end{array}$	Multi-band frequency 1-15 direction and acceleration/ deceleration time	0000	Unit place: the running direction of this paragraph 0: forward 1: reverse Tens place: acceleration / deceleration time of this paragraph 0 : acceleration / deceleration	-	
$\begin{array}{\|c\|} \hline \text { FC-32 } \\ (0 x C 20) \end{array}$		0000		-	
$\begin{array}{\|c\|} \hline \mathrm{FC}-33 \\ (0 \mathrm{xC} 21) \\ \hline \end{array}$		0000		-	
$\begin{array}{\|c\|} \hline \text { FC-34 } \\ (0 x C 22) \\ \hline \end{array}$		0000		-	

Fd group: communication function parameter group

Function code number	Function code name	Factory default	Setting value range and definition	Attributes	Note
Fd-00 $(0 x D 00)$	Master-slave selection	0	0 : slave $1:$ host	O	
Fd-01 $(0 x D 01)$	Communication address	1	$1 \sim 247$	O	

$\left\lvert\, \begin{gathered} \text { Fd-02 } \\ (0 \mathrm{xD} 02) \end{gathered}\right.$	Communication baud rate selection	3	0; 1200 bps 1:2400 bps 2: 4800 bps 3: 9600 bps 4: 19200 bps 5: 38400 bps	O	
$\begin{gathered} \text { Fd-03 } \\ (0 \mathrm{xD} 03) \end{gathered}$	Modbus data format	0	$\begin{aligned} & 0:(\mathrm{N}, 8,1) \\ & 1:(\mathrm{E}, 8,1) \\ & 2:(\mathrm{O}, 8,1) \\ & 3:(\mathrm{N}, 8,2) \\ & 4:(\mathrm{E}, 8,2) \\ & 5:(\mathrm{O}, 8,2) \end{aligned}$	O	
$\begin{array}{\|c\|} \hline \text { Fd-04 } \\ \text { (0xD04) } \\ \hline \end{array}$	Communication ratio setting	1.00	$0.00 \sim 5.00$	\bullet	
$\begin{array}{\|c\|} \hline \text { Fd-05 } \\ \text { (0xD05) } \\ \hline \end{array}$	Communication response delay	0ms	$0 \sim 500 \mathrm{~ms}$	\bullet	
$\begin{gathered} \text { Fd-06 } \\ (0 x D 06) \end{gathered}$	Communication timeout failure time	1.0s	0.1~100.0s	-	
$\left\|\begin{array}{c} \text { Fd-07 } \\ (0 \mathrm{xD} 07) \end{array}\right\|$	Communication failure action selection	0	0: No detection 1: alarm and free stop 2: Warning continues to run 3: forced shutdown	-	
$\begin{gathered} \text { Fd-08 } \\ (0 x D 08) \end{gathered}$	Transmission response processing	0	0 : Have response 1: No response	\bullet	

$\begin{gathered} \text { Fd-09 } \\ (0 x D 09) \end{gathered}$	Host send selection	0031	Unit place: the first group of transmission frame selection 0 : Invalid 1: Run the command 2: given frequency 3: output frequency 4: upper limit frequency 5: given torque 6: Output torque 7, 8: reserved 9: PID given A: PID feedback Tens place: Same as above Hundreds place: The selection of the third group of sending frames is the same as above Thousands: The selection of the fourth group of transmission frames is the same as above	\bullet	
$\left\lvert\, \begin{gathered} \mathrm{Fd}-10 \\ (0 \mathrm{xD} 0 \mathrm{~A}) \end{gathered}\right.$	RS485 communication port configuration	0	0 : Modbus communication 1: other protocols	\bullet	

Group C0: Monitoring code

Function code number	Function code name	Function code number	Function code name
$\mathrm{C} 0-00(0 \times 2100)$	Given frequency	$\mathrm{C} 0-01(0 \times 2101)$	Output frequency
$\mathrm{C} 0-02(0 \times 2102)$	Output current	$\mathrm{C} 0-03(0 \times 2103)$	Bus voltage
$\mathrm{C} 0-04(0 \times 2104)$	Output voltage	$\mathrm{C} 0-05(0 \times 2105)$	Mechanical speed
$\mathrm{C} 0-06(0 \times 2106)$	Input voltage	$\mathrm{C} 0-07(0 \times 2107)$	Input frequency

Function code number	Function code name	Function code number	Function code name
$\mathrm{C} 0-08(0 \times 2108)$	Given torque	$\mathrm{C} 0-09(0 \times 2109)$	Output torque
$\mathrm{C} 0-10(0 \times 210 \mathrm{C})$	PID given amount	$\mathrm{C} 0-11(0 \times 210 \mathrm{D})$	PID feedback
$\mathrm{C} 0-12(0 \times 210 \mathrm{E})$	Module temperature 1	$\mathrm{C} 0-13(0 \times 210 \mathrm{~F})$	Input terminal X is on
$\mathrm{C} 0-14(0 \times 2110)$	Output terminal Y is on	$\mathrm{C} 0-15(0 \times 2111)$	Analog AI input value
$\mathrm{C} 0-16(0 \times 2112)$	Pulse signal HDI input value	$\mathrm{C} 0-17(0 \times 2113)$	Analog output AO
$\mathrm{C} 0-18(0 \times 2114)$	HDO output frequency	$\mathrm{C} 0-19(0 \times 2115)$	Counter count value
$\mathrm{C} 0-20(0 \times 2116)$	Running time of this power-on	$\mathrm{C} 0-21(0 \times 2117)$	Cumulative running time of the machine
$\mathrm{C} 0-22(0 \times 2118)$	Power factor angle	$\mathrm{C} 0-23(0 \times 2119)$	Inverter power level
$\mathrm{C} 0-24(0 \times 211 \mathrm{~A})$	Inverter rated voltage	$\mathrm{C} 0-25(0 \times 211 \mathrm{~B})$	Inverter rated current
$\mathrm{C} 0-26(0 \times 211 \mathrm{C})$	Software version		

4.21 Terminal input and output function selection

X selection	Functional paraphrase	X selection	Functional paraphrase	X selection	Functional paraphrase
0	No function	21	PID control suspended	42	Counter clock input
1	Forward running	22	PID characteristic switching	43	Counter clear terminal
2	Reverse running	23	PID gain switching	44	DC brake command
3	Three-wire operation control (Xi)	24	PID reference switch 1	45	Pre-excitation command terminal
4	Forwardjog	25	PID reference switch2	46	Motor selection terminal
5	Reverse jog	26	PID reference switch3	47	Keep
6	Free parking	27	PID feedback switching 1	48	Command channel switch to keyboard

7	emergency pull over	28	PID feedback switching 2	49	Command channel switch to terminal
8	Fault reset	29	PID feedback switching 3	50	Command channel switch to communication
9	External fault input	30	$\underset{\text { paused }}{\text { Program run (PLC) }}$	51	Keep
10	Frequency increase (UP)	31	$\begin{gathered} \hline \text { Program run }(\mathrm{PLC}) \\ \text { restart } \end{gathered}$	52	Operation prohibited
11	Decreasing frequency (DW)	32	Acceleration/ deceleration time terminal 1	53	Forward rotation prohibited
12	UP/DW clear	33	Acceleration/ deceleration time terminal 2	54	Reverse prohibition
13	Channel A to Channel B	34	Acceleration/ deceleration pause	55	Keep
14	Frequency channel switched to A	35	Swing frequency input	56	Keep
15	Frequency channel switched to B	36	Swing frequency pause	57	Keep
16	Multi-speed terminal 1	37	Swing frequency reset	58	Keep
17	Multi-speed terminal 2	38	Keep	59	Keep
18	Multi-speed terminal 3	39	Keep	60	Keep
19	Multi-speed terminal 4	40	Timer trigger terminal	61	Keep
20	PID control canceled	41	Timer clear terminal	62	Keep
Y selection	Functional paraphrase	Y selection	Functional paraphrase	Y selection	Functional paraphrase
0	$\begin{aligned} & \text { No output(Y } \\ & \text { output HDO } \\ & \text { signal) } \\ & \hline \end{aligned}$	11	Arrived at a given frequency	23	Counter reaches set value
1	Inverter running	12	Zero speed operation	24	Energy braking
2	Inverter running in reverse	13	Upper frequency reached	25	PG feedback disconnected
3	Inverter is running in forward rotation	14	Lower limit frequency reached	26	Emergency stop

4	Fault trip alarm 1 (alarm during fault self-recovery)	15	Program run cycle completed	27	Load pre-alarm output 1
5	Fault trip alarm2 (no alarm during fault self-recovery)	16	The program operation phase is completed.	28	Load pre-alarm output 2
6	External fault shutdown	17	PID feedback exceeds the upper limit	29	Motor overload pre-alarm
7	Inverter undervoltage	18	PID feedback is below the lower limit	30	RS485 given
8	The inverter is ready for operation	19	PID feedback sensor disconnected	21	The code of no explanation retention
9	Output frequency level detection 1 (FDT1)	21			
10	Output frequency level detection 2 (FDT2)	22	Counter reaches maximum		

4.22 Fault code table

| Com
 muni
 catio
 n
 code | Fault
 display | Fault name | Troubleshooting | Solution |
| :---: | :---: | :---: | :--- | :--- |$|$| E. SC |
| :--- |
| 1 |

Com muni catio n code	Fault display	Fault name	Troubleshooting	Solution
		deceleration	- Large potential energy load or load inertia; - The capacity of the inverter is too small.	- External braking resistor or braking unit; - Select the inverter with matching capacity level.
6	E.oC3	Overcurrent at constant speed	- Sudden load change; - The grid voltage is low.	- Check the change of load and eliminate it; - Check the input power and remove the fault.
7	E.oU1	Overvoltage during acceleration	- Power supply voltage fluctuation exceeds the limit; - Start the rotating motor.	- Detect the grid voltage and remove the fault; - The motor stops or restarts after speed tracking;
8	E.oU2	Overvoltage during deceleration	- The deceleration time is set too short; - Load potential energy or inertia is too large; - The power supply voltage has exceeded the limit.	- Prolong the deceleration time appropriately; - Increase the capacity of the inverter or add a braking unit; - Check the input power and remove the fault.
9	E.oU3	Constant speed over voltage	- Power supply voltage fluctuations are out of limits.	- Check the input power and remove the fault;
10	E.LU2	Bus undervoltage	- The power supply voltage is too low; - There is a large inrush current in the power grid; - The internal DC main contactor is not closed.	- Check the input power and remove the fault; - Improve the power supply system; - Seek technical support from the manufacturer.
11	E.oL1	Motor overload	- The grid voltage is low; - Motor overload protection coefficient is not set properly; - The motor is stalled or the load is too heavy; - Low speed running.	- Check the input power; - Use inverters with matching capacity levels; - For long-term low-speed operation, select a dedicated motor. - Speed regulation overload coefficient
12	E.oL2	Inverter overload	- The load is too heavy - The acceleration time is set too short; - Start the rotating motor;	- Use inverters with matching capacity levels; - Prolong the acceleration time appropriately; - The motor stops or restarts after speed tracking;

Com muni catio n code	Fault display	Fault name	Troubleshooting	Solution
13	E.ILF	Input phase loss	- The input power is abnormal; - The internal circuit is abnormal;	- Check the input power; - Seek technical support from the manufacturer.
14	E.oLF	$\begin{array}{\|c\|} \hline \text { Output phase } \\ \text { loss } \end{array}$	- The three-phase output of the inverter is lacking.	- Check the output voltage, current and motor wiring;
15	E.oH2	Rectifier overheating	- The ambient temperature is too high; - The air duct is blocked or the fan is abnormal; - The temperature detection circuit is faulty.	- Make the operating environment of the inverter meet the specifications; - Drain the air duct or replace the fan of the same model; - Seek technical support from the manufacturer.
16	E.oH1	Inverter overheating	- The ambient temperature is too high; - The air duct is blocked or the fan is abnormal; - The temperature detection circuit is faulty.	- Make the operating environment of the inverter meet the specifications; - Drain the air duct or replace the fan of the same model; - Seek technical support from the manufacturer.
17	E. EF	External fault	- External equipment failure protection action.	- Check external equipment.
18	E.SE1	Communicati on failure	- The baud rate is set incorrectly; - Communication connection is broken; - The communication format does not match the host computer.	- Set the matching baud rate; - Check communication connections; - Set the matching communication format.
19	E.HAL	Current detection failure	- Detection circuit failure; - Motor phase imbalance.	- Seek technical support; - Check the motor and wiring.
20	E.AT1	Motor static self-learning	- Motor detection timeout; - Start static detection while the motor is rotating; - The difference between the capacity of the motor and the inverter is too large;	- Check the motor wiring; - Test after the motor stops steady; - Replace the inverter model; - Reset according to the motor nameplate.

| Com
 muni
 catio
 n
 code | Fault
 display | Fault name | Troubleshooting | Solution |
| :--- | :--- | :--- | :--- | :--- |$|$| E.EEP |
| :--- |
| 21 |

Chapter Five Regular Inspection and Maintenance

5.1 Inspection

The inverter is composed of semiconductor devices, passive electronic devices, and motion devices, and these devices have a service life. Even under normal working conditions, if the service life is exceeded, some devices may have characteristics changes or failure. In order to prevent this phenomenon from causing failures, preventive inspection and maintenance such as daily inspection, periodic inspection, and device replacement must be performed. It is recommended to check every 3 to 4 months after the machine is installed.

- Daily inspection: In order to avoid damage to the inverter and shorten its service life, please check the following items daily.

Check item	Check content	Preventive solution
Power supply	Check whether the supply voltage meets the requirements and whether there is a lack of phase power sumnly	Solve according to the nameplate requirements.
Surroundings	Whether the installation environment meets the	Confirm the source and solve it properly.
cooling system	Check whether the inverter and motor have abnormal heating and discoloration, and the working condition of the cooling fan.	Check whether there is overload, tighten the screws, whether the heat sink of the inverter is dirty, and check whether the fan is blocked.
Motor	Check if any abnormal vibration and noise of the motor.	Tighten mechanical and electrical connections and lubricate mechanical parts.
Load condition	Whether the inverter output current is higher than the rated value of the motor or inverter and lasts for a certain period of time.	Check if there is any overload situation and check if the inverter selection is correct.

- Periodic inspection: In general, it is advisable to conduct periodic inspections
every 3 to 4 months, but in actual situations, please determine the actual inspection cycle based on the use of each machine and the working
environment.

Check item	Check content	Preventive solution
Overall	Insulation resistance check; environmental check.	Tighten and replace defective parts; clean and improve the operating
Electrical connections	- Whether there is any discoloration of the wires and connection parts, whether the insulation layer is damaged, cracked, discolored, and aged; - Whether the connection terminals are worn, damaged, or loose; - Ground check.	- Replace damaged wires; - Tighten loose terminals and replace damaged terminals; - Measure the ground resistance and tighten the corresponding ground terminal.
Mechanical connection	- Whether there is abnormal vibration and noise, and whether there is loosening.	- Tighten, lubricate, and replace defective parts.
Semiconductor device	- Whether it is stained with garbage and dust; • Whether there is a noticeable change in appearance.	- Clean operating environment; - Replace damaged parts.
Electrolytic capacitor	- Check for leaks, discoloration, cracks, and exposed, swollen, cracked, or leaking safety valves.	- Replace damaged parts.
Peripheral equipment	- Appearance and insulation inspection of peripheral equipment.	- Clean the environment and replace damaged parts.
Printed circuit board	- Check if there is any odor, discoloration, severe rust, and whether the connector is correct and reliable.	- Fastening connection - Clean the printed circuit board; - Replace damaged printed circuit boards;
Cooling system	- Whether the cooling fan is damaged or blocked; - Whether the heat sink is stained with garbage, dust, or dirt; - Whether the air intake or exhaust is blocked or contaminated with foreign objects.	- Clean operating environment; - Replace damaged parts.
Keyboard	- Whether the keyboard is broken or display is broken.	- Replace damaged parts.
Motor	- Whether the motor has abnormal vibration and abnormal sound.	- Tighten mechanical and electrical connections and lubricate the motor

Attention:

Do not perform related operations with the power on, otherwise there is a danger of death due to electric shock. When carrying out related work, please cut off the power and confirm that the DC voltage of the main circuit has dropped to a safe level. Wait 5 minutes before carrying out related work.

5.2 Maintenance

All equipment and components have a service life. Correct maintenance can extend the service life, but it cannot solve the damage to the equipment and components. Please replace the components according to requirements.

Part name	Life cycle	Part name	Life cycle	Part name	Life cycle
Fan	$2 \sim 3$ years	Electrolytic capacitor	$4 \sim 5$ years	Printed circuit board	$8 \sim 10$ years

The replacement of other components requires very strict maintenance technology and product familiarity, and after replacement, it must be strictly tested before it can be used. Therefore, it is not recommended that users replace other internal components by themselves. If it really needs to be replaced, please contact the agent where you purchased the product or our sales department.

Appendix: Modbus communication protocol

- Communication frame structure

The communication data format is as follows:
Byte composition: including start bit, 8 data bits, check bit and stop bit.

Start bit	Bit1	Bit2	Bit3	Bit4	Bit5	Bit6	Bit7	Bit8	Check bit	Stop bit

A frame of information must be transmitted as a continuous data stream. If the interval of more than 1.5 bytes before the end of the entire frame is transmitted, the receiving device will clear these incomplete information and mistakenly believe that the next byte is a new one. The address field portion of the frame. Similarly, if the interval between the start of a new frame and the previous frame is less than 3.5 bytes, the receiving device will consider it to be a continuation of the previous frame. Due to the frame chaos, the final CRC check value is incorrect, resulting in communication error.

- Communication control parameter group address description

Function Description	Address definition	Meaning of data		$\begin{gathered} \mathrm{R} / \mathrm{W} \\ \text { characte } \end{gathered}$
Communication given frequency	$\begin{aligned} & 0 \times 3000 \text { or } \\ & 0 \times 2000 \end{aligned}$	$\begin{aligned} & 0 \sim 32000 \text { corresponds to } 0.00 \mathrm{~Hz} \sim \\ & 320.00 \mathrm{~Hz} \end{aligned}$		W/R
Communication command setting	$\begin{aligned} & 0 \times 3001 \text { or } \\ & 0 \times 2001 \end{aligned}$	0000H: No command 0001 H : forward running 0002H: Reverse operation 0003H: forward jog	0005H: Slow down $0006 \mathrm{H}:$ Free stop $0007 \mathrm{H}:$ Fault reset $0008 \mathrm{H}:$ Run prohibited command $0009 \mathrm{H}:$ Run enable command	W/R

Function	Address	Meaning of data			R / W
		0004H:	Reverse jog		
Inverter status		Bit0	0: Stop status	1: Operating statusz	R
		Bit1	0: non-accelerated state	1:Accelerated state	
	$0 \times 3002 \text { or }$	Bit2	0 : non-deceleration state	1: Deceleration state	
		Bit3	0: forward	1:reverse	
		Bit4	0 : No fault	1: Inverter failure	
		Bit5	0: GPRS unlock	1: GPRS lock status	
		Bit6	0 : No warning	1: inverter warning	
Inverter fault code	$\begin{aligned} & 0 \times 3003 \text { or } \\ & 0 \times 2003 \end{aligned}$	Inverte table)	current fault code	(see fault code	R
Communication given upper limit frequency	$\begin{aligned} & 0 \times 3004 \text { or } \\ & 0 \times 2004 \end{aligned}$	$0 \sim 320$	00 corresponds to 0	. $00 \mathrm{~Hz} \sim 320.00 \mathrm{~Hz}$	W/R
Communication torque setting	$\begin{aligned} & 0 \times 3005 \text { or } \\ & 0 \times 2005 \\ & \hline \end{aligned}$	$0 \sim 100$	0 corresponds to 0.0	0~100.0\%	W/R
Torque control forward maximum frequency limit	$\begin{aligned} & 0 \times 3006 \text { or } \\ & 0 \times 2006 \end{aligned}$	$0 \sim 100$	0 corresponds to 0.0	$0 \sim 100.0 \%$	W/R
Torque control reverse maximum frequency limit	$\begin{aligned} & 0 \times 3007 \text { or } \\ & 0 \times 2007 \end{aligned}$	$0 \sim 100$	0 corresponds to 0.0	$0 \sim 100.0 \%$	W/R

Function Description	Address definition	Meaning of data		R/W characte
Communication given PID set value	$\begin{aligned} & 0 \times 3008 \text { or } \\ & 0 \times 2008 \end{aligned}$	$0 \sim 1000$ corresponds to $0.0 \sim 100.0 \%$		W/R
Communication given PID feedback value	$\begin{aligned} & 0 \times 3009 \text { or } \\ & 0 \times 2009 \end{aligned}$	$0 \sim 1000$ corresponds to $0.0 \sim 100.0 \%$		W/R
Failure and warning code reading	$\begin{aligned} & 0 \times 3010 \text { or } \\ & 0 \times 2010 \end{aligned}$	$0-63$ is fault code 64 -is warning code		R
Outputterminal status	$\begin{aligned} & 0 \times 3010 \text { or } \\ & 0 \times 2010 \end{aligned}$	Externally borrow the inverter output terminal, BIIO -- Y	$\begin{aligned} & \text { BIT1-- } \\ & \text { TA1-TB1-TC1; } \\ & \text { BIT2-- } \\ & \text { TA2-TB2-TC2 } \end{aligned}$	R
AO1 output	$\begin{aligned} & 0 \times 3021 \text { or } \\ & 0 \times 2021 \end{aligned}$	$\begin{aligned} & 0-10000 \text { corresponding output } 0-10 \mathrm{~V}, \\ & 0-20 \mathrm{~mA} \end{aligned}$		R

Note: For other function code addresses, see the "Communication Address" column in the function code list.

When using the write command $(06 \mathrm{H})$ to write the parameters of the F00 ~FF parameter group, if the highest-order bit of the function code parameter address field is 0 , it is only written into the inverter RAM and is not stored after power-off; if the high-order nibble of the function code parameter address field For 1, write to EEPROM, that is, power-down storage. Such as F00 group: 0x00XX (write RAM) 0x10XX (stored in EEPROM).

-The meaning of the error code of the slave responding to the exception message

Error code	Description	Error code	Description	Error code	Description
1	Command code error	3	CRC check error	4	Illegal address
5	Illegal data	6	Parameters cannot be changed during operation	8	Inverter is busy (EEPROM is being stored)
9	Parameter value exceeded	10	parameters cannot be changed	11	Wrong number of parameter bytes read

KEVAN

Warranty Card

User information

User name:
User address:
Contact: \qquad
Tel:
Tax:
Machine type: \qquad
Machine code:

Agent / Reseller Information

Supplier: \qquad
Contact:
Tel:
Delivery date:

Warranty

The company solemnly promises that users will enjoy the following warranty services from the date of purchase of products from our company (hereinafter referred to as the manufacturer).

1. Since the product was purchased by the user from the manufacturer, enjoy the following three guarantee services
a. Return, replacement and repair within 30 days of delivery:
b. Replacement and repair within 90 days of delivery:
c. Repair within 18 months of delivery:
d. Except when exporting abroad
2. This product enjoys lifetime paid service from the date of purchase by the user from the manufacturer.
3. Disclaimer: Product failure caused by the following reasons is not covered by the manufacturer's free warranty service:
a. Failure caused by the user's use and operation in accordance with the requirements of the «Instruction Manual>:
b. Failure caused by the user to repair or modify the product without communicating with the manufacturer:
c. Failure caused by abnormal aging of the product due to poor user environment:
d. Failures caused by natural disasters such as earthquakes, fires, floods or abnormal voltages:
e. Damage to the product during transportation (the transportation method is specified by the customer, and the company assists in handling the cargo consignment procedures)
4. Under the following conditions, manufacturers have the right not to provide warranty services:
a. When the manufacturer's product logo, trademark, nameplate, etc. are damaged or unrecognizable:
b. When the user fails to pay the purchase price in
accordance with the signed contract:
c. The user intentionally conceals the manufacturer's after-sales service unit when the product is installed, wired, operated, maintained or otherwise improperly used
5. For the service of return, replacement and repair, the company must return or return to the company, and it can only be returned or repaired after confirming the responsibility vested.

Certificate of quality

QC test:

This product has been tested by our company's quality department, and its performance meets the standards, passes the inspection, and is approved to leave the factory

KEVAN

Shenzhen Keyuan Electric Technology Co., Ltd.
Address: 3 / F, building 11, Nangang second industrial zone,Xili street, Nanshan District, Shenzhen City
Tel: 0755-2306 9313
Tax: 0755-8259 2576 Edition: Version 1.0 in 2019
Website: www.kevan.com.cn

