Preface

First of all, thank you for purchasing the KV500 series vector control inverter designed and manufactured by Shenzhen K-easy Electric Technology Co., Ltd.

This manual introduces the functional characteristics and use methods of KV500 series inverters, including product selection, parameter setting, operation debugging, maintenance inspection, etc. Before using the product (installation, wiring, operation, maintenance, inspection, etc.), please be careful Read this manual.

Precautions

- In order to explain the details of the product, the illustrations in this manual are sometimes in the state of removing the cover or safety cover. When using this product, be sure to install the cover or cover in accordance with the regulations, and follow the instructions in the manual.
- The illustrations in this manual are for illustration only and may be different from the products you ordered.
- The company is committed to the continuous improvement of the product, and the product functions will be continuously upgraded. The information provided is subject to change without notice.
- If you have any problems during use, please contact our regional agents or directly contact our customer service center.

Customer Service Phone:

Chapter 1 Inverter Introduction

SET 🗹 🚔 MODEL:KV500-T3-5R5G/7R5P Invertor model RUN MFX ALL Input power specifications SOURCE: 3PH AC380V 50/60HZ G type machine output OUTPUT1:5.5KW 13A 0.00-600.00HZ P type machine output OUTPUT2:7.5KW 17A 0.00-600.00HZ Production serial number S/N: Nanufacturer: Shenzhen K-easy Electric Technology Co., Ltd. $\frac{\mathrm{KV500}}{\mathrm{1}} \ - \ \frac{\mathrm{T}}{\mathrm{2}} \ \frac{\mathrm{3}}{\mathrm{3}} \ - \ \frac{\mathrm{5R5}}{\mathrm{4}} \ \frac{\mathrm{G}}{\mathrm{5}}$ 7R5 P 5 4 Inverter series Code Adapted motor power 1 KV500 Universal 1R5 1.5KW 2R2 2.2KW Code Voltage level 4 5R5 5.5KW 2 т Three phase 7R5 7.5KW S Single phase 011 11KW 015 15KW Code Voltage 2 220V Code Inverter type 3 3 380V 5 G Universal 6 660V Ρ Fan water pump type 11 1140V

1.1 Product naming and nameplate identification

1.2 Specifications and ratings

Three-phase power: 380V, 50/60Hz							
Inverter model Curre		Inverter model	Current	Inverter model	Current		
	nt (A)		(A)		(A)		
KV500-T3-R75G/1R5P	2.1/3.	KV500-T3-045G/055P	90/112	KV500-T3-315G/355P	585/650		
KV500-T3-1R5G/2R2P	3.8/5.	KV500-T3-055G/075P	112/150	KV500-T3-355G/400P	650/725		
KV500-T3-2R2G/3R7P	5.1/9	KV500-T3-075G/090P	150/176	KV500-T3-400G/450P	725/820		
KV500-T3-3R7G/5R5P	9/13	KV500-T3-090G/110P	176/210	KV500-T3-450G/500P	820/880		
KV500-T3-5R5G/7R5P	13/17	KV500-T3-110G/132P	210/253	KV500-T3-500G/560P	880/990		
KV500-T3-7R5G/011P	17/25	KV500-T3-132G/160P	253/304	KV500-T3-560G/630P	990/1100		
KV500-T3-011G/015P	25/32	KV500-T3-160G/185P	304/340	Single-phase			
KV500-T3-015G/018P	32/37	KV500-T3-185G/200P	340/377	KV500-S2-R75G	4		
KV500-T3-018G/022P	37/45	KV500-T3-200G/220P	377/426	KV500-S2-1R5G	7		
KV500-T3-022G/030P	45/60	KV500-T3-220G/250P	426/465	KV500-S2-2R2G	10		
KV500-T3-030G/037P	60/75	KV500-T3-250G/280P	465/520	KV500-S2-3R7G	16		
KV500-T3-037G/045P	75/90	KV500-T3-280G/315P	520/585	KV500-S2-5R5G	20		

1.3 Product technical specifications

lt	em	Specification
	Voltage, frenqucy	Single-phase 220V, 50 / 60Hz Three-phase 380V, 50 / 60Hz
power	Allow fluctuations	Voltage imbalance rate: <3%, frequency: \pm 5% Distortion rate meets the requirements of IEC61800-2
input	Power factor	≥0.94(With DC reactor)
	Inverter efficiency	≥96%
	Output voltage	Output under rated conditions: 3 phases, 0 \sim input voltage, error less than 5%
	Speed range	G type: 0~600Hz
Output	Speed stabilization	± 0.5% of the maximum frequency value
	Overload capacity	Type G: 150% rated current for 1 minute, 180% rated current for 10 seconds, 200% rated current for 0.5 seconds
	Motor control mode	Without PG V / F control, without PG vector control, with PG V / F control, with PG vector control
Main control perform ance	Speed control range	Vector control without PG, rated load 1: 100; Vector control with PG, rated load 1: 1000
	Steady speed accuracy	Vector control without PG: ≤2% rated synchronous speed; with PG vector control: ≤0.05% rated synchronous speed
	Starting torque	Vector control without PG: 150% of rated torque at 0.5Hz; Vector control with PG: 200% of rated torque at 0Hz
	Torque response	Vector control without PG: <20ms; Vector control with PG: <10ms

	Frequency accuracy	Digital setting: maximum frequency × \pm 0.01%; analog setting: maximum frequency × \pm 0.2%
	Frequency resolution	Digital setting: 0.01Hz; analog setting: maximum frequency × 0.05%
	DC braking capacity	Starting frequency: 0.00 \sim 50.00Hz; Braking time: 0.0 \sim 60.0s; Braking current: 0.0 \sim 150.0% of rated current
	Torque boost	Automatic torque boost 0.0% \sim 100.0%; manual torque boost 0.0% \sim 30.0%
	V / F curve	Four methods: linear curve, multi-point V / F curve, torque reduction curve (1.1 \sim 2.0 power), square V / F curve
	Acceleration / deceleration curve	Two methods: linear acceleration and deceleration, S curve acceleration and deceleration; four sets of acceleration and deceleration time, time unit 0.01s, maximum 650.00s
	Rated output voltage	The rated voltage of the motor is 100%, which can be set within the range of 50 to 100% (the output does not exceed the input voltage)
	Automatic voltage adjustment	When the grid voltage fluctuates, it can automatically keep the output voltage constant
Product basic	Automatic energy-saving	Under V / F control mode, the output voltage is automatically optimized according to the load to achieve energy-saving operation
function S	Standard function	PID control, speed tracking and restart after power failure, skip frequency, frequency upper and lower limit control, program operation, multi-stage speed, RS485, analog output, frequency pulse output
	Frequency setting channel	Keyboard digital setting, keyboard potentiometer, analog terminals Al1, Al2, communication reference and multi-function terminal selection, main and auxiliary channel combination, expansion card, can be switched in various ways
	Feedback input channel	Voltage / current terminal AI, communication reference, pulse input HDI
	Run command channel	Operation panel setting, external terminal setting, communication setting, expansion card setting
	Input command signal	Start, stop, forward and reverse, jog, multi-speed, reset, acceleration / deceleration time selection, frequency setting channel selection, external fault alarm
Protective function		Over-voltage, under-voltage, current limit, over-current, overload, electronic thermal relay, over-temperature, over-voltage stall, data protection, rapid protection, input and output phase loss protection
Surroun	Installation site	Altitude is less than 1000 meters, derating for use above 1000 meters, derating 1% for every 100 meters; no condensation, icing, rain, snow, hail, etc., solar radiation is less than 700W / m2, air pressure is 70 \sim 106kPa
	Temperature, humidity	-10 \sim + 50 °C, derating above 40 °C, maximum temperature 60 °C (no-load operation); 5% \sim 95% RH (non-condensing)
ungs	Vibration	When 9~200Hz, 5.9m/s2(0.6g)
	Storage	-30 ~+60°C
	Protection class	IP20
	Cooling method	Forced air cooling

Chapter 2 Mechanical Installation and Wiring

2.1 Product safety precautions

This section describes various precautions that must be followed to ensure the safe use of the product by the user, maximize the performance of the inverter, and ensure reliable operation of the inverter.

FITOGUUTO	
Warning	• When installing the inverter inside a closed cabinet, please install a cooling fan or cooling air conditioner to fully cool the inverter to ensure that the temperature of the inverter's air inlet is below 40 ° C to ensure that the inverter can operate safely and reliably.
Important	 When installing, please cover the upper part of the inverter with cloth or paper to prevent metal debris, oil, water and other debris from entering the inverter during the drilling operation. Carefully remove these obstructions after the operation is completed. When operating the inverter, please observe the measures and methods specified by ESD prevention measures, otherwise the inverter may be damaged. If multiple inverters are installed in the cabinet, sufficient space must be reserved in the upper part of the inverter to facilitate the replacement of the cooling fan. Do not use the inverter beyond its rated range, otherwise the inverter may be damaged. When transporting the inverter, please be sure to hold the stable case. If only the front cover is grasped, the main body of the inverter may fall, which may cause personal injury or damage the inverter.
 Motor use pr 	recautions

 Motor use pr 	recautions
	The maximum allowable running speed of different motors is different. Do not use the motor beyond the maximum allowable operating speed of the motor. When the invotes is running at low aread, the self section affect of the mater is serieucly.
Important	 When the inverter is running at low speed, the self-cooling effect of the motor is selfously reduced. If the motor is at low speed for a long time, it will be damaged by overheating:
	reduced. If the motor is at low speed for a long time, it will be damaged by overheating,
	• Resonance may occur during variable-speed operation of a machine running at a constant
	speed. Install anti-vibration rubber under the motor bracket or use the skip frequency
	control function to avoid it.
	• The torque characteristics are different when the motor is driven by a variable frequency
	drive and a commercial power supply. Please confirm the torque characteristics of the mechanical equipment to be connected.
	• The rated current of the submersible motor is greater than the standard motor. Please pay
	attention to confirm the rated current of the motor and select an appropriate inverter.
	• When the distance between the motor and the inverter is large, the maximum torque of the
	motor will be reduced due to the voltage drop. Therefore, when connecting over long
	distances, use a sufficiently thick cable for connection.

•Precautions for using the inverter

2.2 Inverter dimensions

Inverter model	Installation hole position (mm)		Dimensions (mm)			Installation	
	Α	В	Н	H1	w	D	aperture
KV500-T3-R75G/1R5P							
KV500-T3-1R5G/2R2P	106.6	175	18	35	118 157	157	Ø4.5
KV500-T3-2R2G/3R7P							
KV500-T3-3R7G/5R5P							
KV500-T3-5R5G/7R5P	148	235	24	17	160	178	Ø5.5
KV500-T3-7R5G/011P							
KV500-T3-011G/015P							
KV500-T3-015G/018P	205	305	32	20	220	198	Ø6
KV500-T3-018G/022P	200						20
KV500-T3-022G							

2.3 Product terminal configuration

2.3.1 Function description of connection of conversion terminal

categor y	Tern sym	ninal bol	Terminal name	Terminal functi	ion definition		
Davia	+10V-GND		+ 10V external power supply	10V auxiliary po	10V auxiliary power output, maximum output 10VDC / 50mA		
Power	+24\	/-СОМ	External + 24V power supply	Provide + 24V p 100mA	Provide + 24V power to the outside, the maximum output is 100mA		
Analog	Al1-	GND	Analog terminal 1	 Input range: jumper selection 100KΩ for voltage 	DC 0V-10V / 4mA-20mA, determined by Al-1 n on the control board. 2. Input impedance: ge input and 500Ω for current input.		
input	AI2-0	GND	Analog terminal 2	1. Input range: Al-2 jumper s impedance: 100	DC 0V-10V / 4mA-20mA, determined by the selection on the control board. 2. Input $K\Omega$ for voltage input, 500 Ω for current input		
Digital	(X1-	X4)-COM	Digital input 1-4	The inside is programmed to 8mA.	a photoelectric converter, which can be o operate. Input conditions: max. DC30V/		
mput	X5-0	сом	High-speed pulse terminal	With X1-X4 fund maximum input	ction and high-speed pulse input function, the frequency: 100KHz.		
Analog	A01-GND		Analog output 1	The voltage or current output is determined by the AO-1 jumper selection on the control board.			
output	AO2	-GND	Analog output 2	The AO-2 jumper selection on the control board determines the voltage, current and frequency output.			
Relay output	TB1-TC1 TA1-TC1		Normally closed terminal Normally open terminal	Programmable action objects, maximum contact capacity. / 240VAC 5A / 30VDC			
Commu nication	Commu nication B-		Communication terminal A+ Communication terminal B-	RS485 commun	nication interface		
Conversion terminal		leg	end	Function Description			
0 0 1 (AO-1)		I	• =	I Connect	(AO1)0~20mA/4~20mA current output		
		U		U Connect	(AO1)0 \sim 10V voltage output		
		1		+I	(AO2)0~20mA/4~20mA current output		
(AO-2)		U		-U	(AO2)0~10V voltage output		

	AO2-F	FMFM	(AO2)FM frequency output
UI (Al-1)	I	I Connect	(AI1) 0 \sim 20mA/4 \sim 20mA current input
	U	U Connect	(Al1)0 \sim 10V voltage input
••• U I (Al-2)	I	• • I Connect	(AI2) 0 \sim 20mA/4 \sim 20mA current input
	U	U Connect	(Al2)0 \sim 10V voltage input
GND-PE COM-PE	PE	PE Connect	Connect COM / GND to PE

2.3.2 Inverter electrical circuit wiring

The wiring method of the inverter control circuit is shown in the figure on the following page:

Note: 1) When installing the DC reactor, be sure to remove the shorting piece between the P1, (+) terminals;

- The multi-function input terminals (X1-X5) can select NPN or PNP transistor signals as input, and the bias voltage can be selected from the inverter's internal power supply (+ 24V terminal) or external power supply (24V).
- 3) The analog monitoring output is a dedicated output for the ammeter, voltmeter and other indicator tables, and cannot be used for control operations such as feedback control.
- 4) The default 24V open collector input, without external 24V. HDI supports open collector signal> 18V, pulse signal> 9V input, the highest pulse HDI can receive is 100KHz.

Chapter 3 Operation Display and Description

• Keyboard Operator Appearance

• Key Function

Key symbol	Key name	Functional description
PRG	Menu	Enter or exit the first-level menu.
SET	Confirm/Modify key	Enter the menu screen step by step and confirm the setting parameters.
•	Increment key	Increase of data or function code.
×	Decrement key	Decrease of data or function code.
RUN	Run key	In the keyboard operation mode, it is used to run the operation.
MF.K	Multi-function selection key	According to the F4-07 parameter for function switching selection, the command source or running direction can be defined to switch quickly.
STOP RESET	Stop / Reset button	In the running state, press this key to stop the running operation; when the fault alarm is used for resetting operation, the characteristics of this key are restricted by F4-08 parameters.
>> SHIFT	Shift key	Under the display interface, select the display parameters cyclically; when modifying the parameters, it is used to switch the modification bits.
6	Keyboard	It can be used to set input value for given frequency, given torque, PID
9	potentiometer	given, PID feedback, etc.

• Indicator meaning

Name		Status	Meaning
Unit	Hz	Flashing / bright	Indicates the frequency unit.
indicator	А	Bright	Indicates the current unit.

	V	Flashing / bright	Indicates the voltage unit.
	S	Bright	Indicates the time unit.
RPM		Bright	Indicates the speed unit.
	%	Flashing / bright	Indicates a percentage unit.
04-4-4-	RUN	Bright	Inverter is running forward.
indicator	RUN	Flashing	Inverter is running in reverse.
	RUN	OFF	The inverter stops.

Chapter 4 Detailed description of function parameters

4.1 Basic parameters

F0-00	G / P model display	Setting range: 0 \sim 1	Default: 0		
0: G type	machine Suitable for con	stant torque loads			
1: P type	P type machine Suitable for variable torque loads (fan, pump type loads)				
F0-01	Control operating mode	Setting range: 0~3	Default: 0		

0: VF control: According to the voltage / frequency ratio, it can automatically compensate the stator resistance voltage loss and automatically compensate the slip frequency. It has higher low-frequency torque and speed accuracy than control mode 1, and can be used for encoderless speed feedback with higher requirements for low-frequency torque control;

- High-performance vector control without PG: That is, the speed sensorless vector control operation
 mode is used for all speed control. Set this mode when high-precision speed control is required.
 In this mode control, even if the feedback signal of the motor is not used, the torque can respond
 quickly, and a large torque can be obtained when the low-speed motor is running.
- 2: High-performance vector control with PG: That is, there is a speed sensor vector control operation mode. This control mode is used for all variable speed control with fast torque response and high performance torque control. High-precision speed control up to zero speed is possible. In order to receive the speed feedback signal of the motor, you need to use the PG optional card.

It is mainly used in places with strict control performance such as high-precision speed control, torque control, and simple servo control.

3: Voltage and frequency separation output: That is, the output voltage and output frequency can be set and adjusted independently, and are generally used in industries such as EPS power supply, torque motor control, and high-frequency heating;

Notes: 1. PG refers to a speed-measuring encoder. It is used for vector control with PG. Generally, there is a photoelectric encoder or resolver. You need to select the corresponding PG card according to the PG type and parameters. For details, see the function code [F5-30];

2. When selecting the vector control mode, before the first run, the motor parameters must be input correctly and the motor parameters are automatically tuned to obtain the correct motor parameters. For details, please refer to the detailed description of the "F5" motor parameter group.

3. The parameters of the vector control parameter group must be set correctly to ensure good steady-state and dynamic control performance. For the parameter setting and adjustment of the vector control parameter group, please refer to the detailed description of the "F6" parameter group.

4. When selecting the vector control mode, it should be noted that the inverter can only drive one motor at the same time; and the level of the inverter capacity and the motor capacity must not be too large, the inverter can be two or one level higher than the motor power level Otherwise, the control performance may be reduced, or the drive system may not operate normally.

F0-02	Operation selection	instruction	Setting range: 0~2	Default: 0
-------	---------------------	-------------	--------------------	------------

It is used to select the channel where the inverter accepts running and stopping commands and running direction. Torque control is only used for start and stop control.

- **0:** Keyboard control The operation and stop of the inverter are controlled by the forward running key **RUN**, reverse running or jog key **MF.K** and stop key **STOP / RESET** on the keyboard. The **MF.K** key is defined as reverse rotation or jog selection through **[F4-07]**, set "0" as reverse rotation, and set "1" as jog.
- Terminal control The running command control is performed by the multi-function input terminals forward, reverse, forward jog, reverse jog, etc., see [F2-00 ~ F2-04] for details. See [F2-20] for terminal operation control mode, and [F2-21] for terminal start protection.
- 2: Communication control The running command is given by the host computer through Modbus RS485 communication. For communication parameter settings, please refer to Fd Communication Control Parameter Group. When point-to-point broadcast communication, the slave selects the running command transmitted by the host as the running command, please refer to [Fd-09] description.
- The running command is set and modified through the address 0x3001 / 0x2001. For details, see Appendix 1: Modbus Communication Protocol.
- Note: 1. When the fault is reset, the keyboard STOP / RESET key, control terminal reset command, and RS485 communication port are all valid reset commands.
- Tip: The function of the STOP / RESET key on the keyboard can be selected. In external terminal control or communication control, it can be defined as the stop button and other functions, please refer to the parameter [F4-08]; when the external terminal is running control, if the keyboard STOP If the / RESET key is stopped, the inverter stops and the external terminal running command is blocked at the same time. At this time, the external terminal stop command needs to be input to release the lock, and the external terminal running command is valid again. The communication control is the same.

F0-03	Main frequency given source	Setting range: 0 \sim 9	Default: 0
F0-04	Auxiliary frequency reference source	Setting range: 0 \sim 9	Default: 1

In [F0-03] and [F0-04], select the given source of the set frequency of the inverter; [F0-06] set the relationship between the main and auxiliary channels.

- Keyboard number given frequency The setting frequency is given by the parameter [F0-08] keyboard digital setting frequency; the current setting value of the parameter [F0-08] can be quickly modified by the [F4-09] LED unit digit to select the keyboard up / down keys; Please refer to parameter [F4-09] for details of power-off storage and selection of action limit of up / down keys.
- Keyboard potentiometer given The set frequency is given by the potentiometer on the keyboard. The input voltage is linearized through the keyboard potentiometer, and the calibration 100% corresponds to the maximum frequency. For details, see the parameters [F4-10 ~ F4-13].
- 2: Analog Al1 given
- 3: Analog Al2 given

The set frequency is given and modified by the input analogs AI1 and AI2. By linearizing the input analog value, the calibration is 100% corresponding to the maximum frequency. For details, see "F3" parameter group analog processing

4: Terminal pulse HDI given The set frequency is given and modified by the input terminal pulse signal of the control terminal (**HDI**); through the linearization processing of the input pulse signal, the scaling 100% corresponds to the maximum frequency, see the parameters [F2-22 \sim F2-27] for details

- 5: RS485 communication given The set frequency is given by the communication method. For the communication parameter settings, please refer to the Fd communication control parameter group. When point-to-point broadcast communication, the slave selects the host to send the given frequency or output frequency as the set frequency, please refer to [Fd-09] description. The set frequency can be set and modified by address 0x3000 / 0x2000, see appendix: Modbus communication protocol.
- 6: Terminal UP / DW control The set frequency is controlled by the control terminal to increase and decrease. The multi-function terminals (X1 ~ X5) set the "frequency increase (UP)" terminal and "frequency decrease (DW)" terminal and (COM) on and off to control. For details, please refer to the parameter [F2-00 ~ F2-04] terminal function description.
- 7: PID control given When [F0-03] or [F0-04] selects this channel, the inverter operation mode is process PID control, the set frequency is the output after PID action, PID control given amount, feedback amount and other control parameters, see details Process PID control parameter group "Fb".
- The current setting value of parameter **[Fb-01]** can be quickly modified by **[F4-09]** LED single digit selection keyboard up / down key, the parameter value is stored after power off and the selection of action limit of up / down key is shown in parameter **[F4-09**].
- The status and characteristics of PID control can be changed through the multi-function input terminals. For details, please refer to the parameter **[F2-00** ~ **F2-04]**.
- 8: Program control (PLC) given The set frequency and the running direction of the inverter are controlled by the simple PLC process inside the inverter, and the process can control up to 15 stages of speed; see the parameter "FC" multi-stage speed, PLC function and swing frequency parameter group for details; If the running time of a certain speed is set to "0", the speed will be skipped when the program is running,

so that the speed of the program can be easily set. When the parameter **[F0-16]** LED hundred place is set to "0", the frequency control direction is invalid or **[F0-16]** LED ten place is set to "1", when reverse rotation is prohibited, if any direction of speed run command direction is set To reverse, the inverter will run at 0.00Hz at this speed.

Both program operation and multi-speed operation are to realize the variable-speed operation of the inverter according to certain rules. In multi-speed operation, the switching of multi-speed and the change of running direction are realized by different combinations of "multi-speed control terminal" and (COM) defined in "multi-function input terminal". The program operation function can not only define the multi-band frequency of a cycle in the function parameters, but also define the time, direction, acceleration and deceleration time and cycle mode of the multi-band frequency operation in the function parameters. The multi-speed control terminals can be defined by any multi-function terminals. For details, please refer to the parameters [F2-00 \sim F2-04].

9: Multi-speed given The set frequency is selected by the "multi-speed terminal". If the frequency main and auxiliary channels are not selected for multi-speed, the multi-speed terminal has a higher priority to switch the frequency to the multi-speed. If multi-step speed reference is selected, it will be carried out according to the setting combination of the frequency source. When the multi-step speed terminals are

invalid, the multi-step speed reference will be zero. Refer to parameter [F2-00 \sim F2-04] for selection of "multi-speed terminal".

F0-05	Auxiliary frequency reference source	Setting range: $0 \sim 1$	Default: 0
			Donaditi o

The auxiliary frequency reference source is selected by this parameter. The reference source of the main frequency reference source is the maximum frequency **[F0-09]**.

0: Use the maximum frequency as the reference source

1: Take the main frequency as the reference source

Auxiliary channel setting frequency = Auxiliary channel frequency reference source × Absolute value of main frequency channel setting frequency / maximum frequency

		F0-06	Frequency command overlay selection	Setting range: 0 \sim 5	Default: 0
--	--	-------	-------------------------------------	---------------------------	------------

It is used to select the combination mode of inverter setting frequency channel A and channel B.

- 0: Main frequency Only the main frequency channel [F0-03] is valid, the auxiliary frequency channel [F0-04] is invalid.
- 1: Auxiliary frequency Only the auxiliary frequency channel [F0-04] is valid, the main frequency channel [F0-03] is invalid.
- 2: Main + auxiliary The main frequency channel [F0-03] sets the frequency plus the auxiliary frequency channel [F0-04] sets the frequency, and the sum of the two sets the frequency for the inverter.
- 3: The main-auxiliary channel [F0-03] set the frequency minus the channel [F0-04] set the frequency, the difference between the two is the frequency set by the inverter, this way may produce a negative frequency, when negative Whether the output is valid at value frequency is determined by [F0-16] setting.
- 4: Maximum value of both channels [F0-03] set frequency and channel [F0-04] set frequency take the maximum value, whichever is the inverter set frequency.
- 5: Minimum value of both channels [F0-03] set frequency and channel [F0-04] set frequency take the minimum value, whichever is the set frequency of the inverter.

Note:

- 1. When the jog running command is valid, the jog setting frequency is used as the inverter setting frequency.
- The main and auxiliary channels have not selected the multi-step speed reference. If the multi-step speed terminal selection is valid, the corresponding frequency selected by the multi-step speed terminal will be used as the inverter set frequency.
- 3. When the given source selected by the main and auxiliary channels is the same, no superposition calculation is performed, and the given source frequency of the main channel is used as the set frequency of the inverter.
- 4. Priority of frequency reference source: from high to low, it is jog running frequency setting, multi-speed setting (selected from non-channel), run command binding given frequency, frequency given source channel.
- 5. If the rotation direction selection [F0-16] is set to reverse prohibition, no matter what value the frequency control direction selection is set to, when the frequency calculation result is negative, the inverter will output 0.00Hz frequency.
- Tip: The given frequency after the synthesis of the main and auxiliary channels is still limited by the upper limit frequency and the lower limit frequency.

F0-07 Ru	n command bundle	Setting range: 0000~AAAA	Default: 0000
----------	------------------	--------------------------	---------------

When this parameter is valid, it is used to set the frequency source channel for each running command channel. When the command source has a bundled frequency source, the set frequency obtained by **[F0-03** \sim **F0-06]** will no longer be valid during the period when the command source is valid, but **[F0-16]** LED hundred-digit frequency direction control is still valid.

0: No bundling Press [F0-03 \sim F0-06] setting to determine the frequency reference.

1: Keyboard number setting 2: Potentiometer setting

3: Al1 given 4: Al2 given

5: HDI given 6: RS485 given

7: Terminal UP / DW 8: PID given

9: PLC given A: Multi-stage speed given

The above 1 $\,\sim\,$ 10 settings are consistent with the description of the main frequency reference channel selection [F0-03].

F0-08	Keyboard frequency	digital	setting	Setting range: 0.00 \sim Upper limit frequency	Default: 50.00Hz
-------	-----------------------	---------	---------	--	------------------

This parameter is valid only when the frequency reference channel **[F0-03, F0-04]** is set to "0: keyboard number setting", and is used to set and modify the keyboard number setting frequency.

F0-09	Maximum frequency	Setting range: Upper limit frequency \sim 600.00Hz	Default: 50.00Hz
F0-10	Upper frequency source selection	Setting range: 0~7	Default: 0
F0-11	Digital setting of upper limit frequency	Setting range: Lower limit frequency \sim maximum frequency	Default: 50.00Hz
F0-12	Lower limit frequency	Setting range: 0.00 \sim Upper limit frequency	Default: 0.00Hz
F0-13	Lower frequency operation mode	Setting range: 0~1	Default: 1

- Maximum frequency: when the analog input, pulse input (HDI), multi-speed, etc. are used as frequency sources in the inverter, 100% of each is scaled relative to the maximum frequency; when the [F1-16] LED unit digit is set to "0", The maximum frequency is used as the reference frequency for acceleration / deceleration time.
- **Upper frequency source selection:** select the given source of inverter upper frequency. The upper limit frequency is the upper limit of the given frequency, which limits the given frequency.
 - 0: Upper limit frequency digital setting is set by parameter [F0-11].
 - 1: keyboard potentiometer given
 - 2: Analog quantity Al1 given
 - 3: Analog quantity Al2 given
 - 4: Terminal pulse HDI setting
 - 5: RS485 communication setting Set by address 0x3004 / 0x2004, please refer to the appendix: Modbus communication protocol
 - When using keyboard potential, analog (AI1, AI2), terminal pulse (HDI), it is similar to the main frequency given channel, please refer to [F0-03] introduction.

Upper limit frequency digital setting: when [F0-10] is set to "0", the upper limit frequency given channel.

Lower limit frequency: when the set frequency is lower than the lower limit frequency, the inverter can run at zero frequency or lower limit frequency. Which operating mode to use is set by [F0-13] to set the lower limit frequency operating mode.

Lower frequency operation mode:

- 0: Stop output, enter into suspended operation state Maintain the running state, no voltage output.
- 1: Running at the lower limit frequency When the actual set frequency is lower than the lower limit frequency, the inverter runs at the lower limit frequency.
- Note: The maximum frequency, upper limit frequency and lower limit frequency should be set carefully according to the requirements of operating conditions. In addition to the upper limit frequency and the lower limit frequency, the output frequency of the inverter during operation is also limited by the setting values of parameters such as start frequency, stop detection frequency, stop DC braking start frequency, jump frequency and other parameters. The relationship between maximum frequency, upper limit frequency and lower limit frequency is shown in the figure below.

F0-14	Acceleration time 0	Setting range: 0.00~650.00s	Default: Model settings
F0-15	Deceleration time 0	Setting range: 0.00 \sim 650.00s	Default: Model settings

The acceleration time refers to the time required for the output frequency to accelerate from 0.00 Hz to the time reference frequency, and the deceleration time refers to the time required for the output frequency to decelerate from the time reference frequency to 0.00 Hz. The maximum frequency, the fixed frequency of 50 Hz, and the given frequency can be selected as the time reference frequency through the parameter **[F1-16]**.

Diagram of acceleration and deceleration time

Normal frequency acceleration and deceleration can choose 4 groups of acceleration and deceleration time. The acceleration / deceleration time 1 is set by **[F0-14** \sim **F2-15]**, and the acceleration / deceleration time 2, acceleration / deceleration time 3, and acceleration / deceleration time 4 are set by **[F1-21** \sim **F2-26]**. Acceleration and deceleration time 1 is the default acceleration and deceleration time group. If you want to select other acceleration and deceleration time groups, you can select it through the control terminal. When the program is running, one of the 4 groups of acceleration and deceleration time can be selected for each program operation segment, regardless of the terminal selection. For details, see **[FC-31** \sim **FC-45]**.

Jog acceleration and deceleration time are set by [F1-39, F1-40].

The emergency stop deceleration time is set by [F1-27]

F0-16	Choice of running direction	Setting range: 0000~0121	Default: 0000

Units of LED: Reverse running direction Used to select the adjustment of motor running control direction. 0: unchanged direction The actual steering of the motor is the same as the required steering, and the current motor direction is not adjusted;

1: Reverse the direction The actual steering of the motor is opposite to the required steering, adjust the current direction of the motor;

Tens of LED: Prohibition of running direction It is used to select the validity of motor running control direction.

0: Allow forward and reverse commands. The inverter accepts forward and reverse commands to control the motor operation;

1: Only forward command is allowed. The inverter only accepts the forward control command to control the motor. If the reverse command is given, the inverter will not run.

2: Only allow reverse command. The inverter only accepts the reverse control command to control the motor operation; if the forward command is given, the inverter will not run.

Hundreds of LEDs: Frequency control direction selection Used to select whether to allow negative

frequency to change the current inverter running direction when the frequency setting value is negative.

0: The frequency control direction is invalid. If the calculation result is negative, the inverter outputs a frequency of 0.00 Hz.

1: Frequency control direction is valid. If the calculation result is negative, the inverter changes the current running direction and outputs the corresponding frequency.

Notes:

When restoring the factory value, the setting value of this parameter will not be changed. When this parameter is set to a certain value, all commands of the running command channel (operation keyboard, external terminals, RS485 communication) are affected by the selected value.

F0-17	PWM carrier frequency	Setting range: 0.7~16.0kHz	Default: Model settings
			-

Used to set the switching frequency of the inverter IGBT. Please set this parameter when adjusting electromagnetic noise and reducing leakage current. This function is mainly used to improve the noise and vibration that may occur during the operation of the inverter. The current waveform is ideal when the carrier frequency is high, and the motor noise is small. It is very suitable in places where silence is required. But at this time, the switching loss of the main components is larger, the whole machine generates more heat, the efficiency is reduced, and the output is reduced. At the same time, the radio interference is relatively large. Another problem when operating at high carrier frequencies is that the capacitive leakage current increases. When a leakage protector is installed, it may cause malfunction or overcurrent. When running at a low carrier frequency, it is contrary to the above phenomenon.

Different motors respond differently to the carrier frequency. The best carrier frequency also needs to be adjusted according to the actual situation. But as the motor capacity increases, the carrier frequency should be selected smaller.

Carrier	Motor noise	Electrical	Radiator
frequency		interference	temperature
Low	Loud	Low	Low
↓ ↓	Ļ	Ļ	Ļ
High	Low	Large	High

The company reserves the right to limit the maximum carrier frequency.

Tip: In order to obtain better control characteristics, the ratio of carrier frequency to the maximum operating frequency of the inverter is recommended not to be lower than 36. If the inverter is working in a low frequency band for a long time, it is recommended to reduce the carrier frequency to reduce the impact of dead time.

Note: When the carrier frequency is higher than the factory-set value, the rated power of the inverter should be reduced by 5% for each additional 1kHz carrier frequency.

F0-18	PWM control mode	Setting range: 0000 \sim 1111	Default: 1111
-------	------------------	---------------------------------	---------------

Units of LED: Carrier is related to temperature

0: independent of temperature

1: related to temperature

When the temperature of the inverter is too high, the inverter will automatically reduce the carrier frequency; using this function can reduce the switching loss of the power device and prevent frequent alarms of the inverter overheating fault.

Tens of LED: Carrier is related to output frequency

0: Independent of output frequency

1: related to output frequency

When the correlation between the carrier and the output frequency is valid, the inverter can automatically adjust the carrier frequency according to the output frequency. This function can improve the inverter's low-frequency performance and high-frequency mute effect.

Hundreds of LEDs: Random PWM enable

0: Prohibited The motor noise frequency is fixed.

1: Enable This method can make the harmonic spectrum of the output voltage of the inverter be evenly distributed in a wide frequency range, which can effectively suppress motor noise and mechanical vibration.

Thousands of LEDs: PWM modulation mode Select the PWM mode of the inverter

0: Only use three-phase modulation

1: Two-phase three-phase modulation automatic switching

F0-19	Parameter initialization	Setting range: 0~3	Default: 0

0: No operation

1: Restore the factory value (do not restore the motor parameters) After the parameters are restored to the factory values, the function parameters are restored to the factory defaults, excluding the motor parameter group.

2: Restore the factory value (restore the motor parameters) After the parameters are restored to the factory values, the function parameters are restored to the factory default values, and restored together with the motor parameter group.

3: Clear fault record Clear all the historical fault information recorded by [FA-40 \sim FA-59].

F1-00	Start method	Setting range: 0~2	Default: 0
F1-01	Start pre-excitation time	Setting range: 0.00~60.00s	Default: model setting
F1-02	Start frequency	Setting range: 0.00 \sim 60.00Hz	Default: 0.50Hz
F1-03	Start frequency hold time	Setting range: 0.0 \sim 50.0s	Default: 0.0s
F1-04	DC injection current	Setting range: 0.0 \sim 150.0%	Default: 60.0%
F1-05	DC injection time	Setting range: 0.0~60.0s	Default: 0.0s

4.2 Operation control parameters

Start operation mode:

- 0: Start the inverter from the start frequency, and start the inverter with the start frequency set by [F1-02] and the start frequency duration set by [F1-03]; it is suitable for occasions with large static friction torque and small load inertia , Or when the user cooperates with external mechanical braking equipment. That is, where the motor shaft can remain stationary after the motor is stopped and then restarted.
- 1: DC braking first and then start from the starting frequency First apply DC injection current [F1-04] and DC injection time [F1-05] to the load motor to apply a certain DC braking energy (ie electromagnetic brake), and then start again Frequency start; suitable for small inertial loads with forward or reverse rotation in the stop state.
- 2: Start after speed tracking and direction judgment The inverter first detects the speed and direction of the

motor, and then starts to run to the given frequency according to the acceleration / deceleration time at the detected speed.

- Start pre-excitation time: This parameter is used to set the time for pre-excitation of asynchronous motor at startup. This parameter can establish the magnetic field before the motor starts, which can effectively improve the starting performance of the motor and reduce the starting current and starting time.
- **Start frequency:** refers to the initial output frequency of the inverter when it starts. Setting a suitable starting frequency can have a higher starting torque, and for some loads with a large static friction force in a static state, some impulse can be obtained at the moment of starting. However, if the set value is too large, E.oC1 and other faults may sometimes occur.
- Starting frequency duration: refers to the time the inverter maintains at the starting frequency. After the maintaining time, it starts to enter normal acceleration and deceleration.
- **DC injection current:** refers to the magnitude of the braking current sent by the inverter to the motor during DC braking. This value is based on the rated output current of the inverter. Only when **[F1-00]** is selected as "1" will there be DC braking function at startup. This parameter is set to 0 to start DC braking is invalid.
- **DC injection time:** refers to the duration of the DC braking current at the start; only when **[F1-00]** is selected as "1" will there be a DC braking function at the start; when the braking time is 0.0 seconds, no DC braking process .
- Note: The starting frequency is not limited by the lower limit frequency [F0-12] and the zero speed torque frequency threshold [F1-29].

F1-06	Speed tracking	Setting range: 0.00 \sim 60.00s	Default: 0.50s
F1-07	Speed tracking shutdown delay	Setting range: 0.00 \sim 60.00s	Default: 1.00s

Speed tracking speed: refers to the time it takes for the output voltage to be added to the normal voltage at the current speed during the speed tracking start of the inverter. The shorter the time, the faster the tracking process, but the greater the current impact generated by the tracking process. When it is zero, the tracking speed is automatically controlled by the inverter.

Speed tracking stop delay: It means that after the output of the inverter is cut off, a certain delay is required to output the voltage to start the motor again, so that the inrush current at the start is as small as possible. When the time is zero, the delay is automatically controlled by the inverter.

F1-08~F	1-09	Reserved	
F1-10	Stop mode	Setting range: 0~1	Default: 0

0: Deceleration stop According to the set deceleration time and deceleration mode, the inverter stops output after decelerating to 0.00Hz frequency.

In the process of decelerating and stopping, when the output frequency is less than the stop DC braking start frequency **[F1-11]**, the output frequency of the inverter jumps to zero, DC braking is performed and the work is stopped after the execution is completed; otherwise the inverter will decelerate Stop working after the minimum output frequency.

In the process of decelerating and stopping, for the machine with built-in braking unit (KV500-T3-018G and below), external braking resistor (optional) can be connected. When the DC bus voltage exceeds **[F4-26]**, the energy consumption braking action At the voltage value, the inverter starts to perform energy-consuming braking action.

Machines without built-in braking unit (KV500-T3-022G and above) can be equipped with external braking unit and braking resistor. This mode is mainly used in situations where quick braking is required during shutdown.

1: Free stop The inverter immediately blocks the output after receiving the stop command, and the motor runs freely to stop. When this method is selected, the external mechanical brake is generally used to achieve rapid stop.

F1-11	Starting frequency of DC braking at stop	Setting range: 0.00 \sim 50.00Hz	Default: 1.00Hz
F1-12	DC braking current at shutdown	Setting range: 0.0~150.0%	Default: 60.0%
F1-13	DC brake holding time at stop	Setting range: 0.0~60.0s	Default: 0.0s
F1-14	Minimum output frequency during shutdown	Setting range: 0.00 \sim 50.00Hz	Default: 0.50Hz

Starting frequency of DC braking at stop: It means that when the inverter decelerates to this frequency, it will stop the output and start the DC braking function; when stopping, the DC braking function will be started when the output frequency is less than the starting frequency of DC braking at stop.

During deceleration and stop, when the given frequency is less than the stop DC braking start frequency, DC braking starts and the output frequency of the inverter jumps to zero. If the operating conditions do not have strict requirements for stopping and braking, the starting frequency of DC braking should be set as low as

possible when stopping.

DC braking current at stop: refers to the magnitude of the braking current sent by the inverter to the motor during DC braking. This value 100.0% corresponds to the rated output current of the inverter.

DC braking function can provide zero speed torque. It is usually used to improve the stopping accuracy and achieve a quick stop, but it cannot be used for deceleration braking during normal operation; that is, once DC braking starts, the inverter will stop output. If the DC braking current is set too large, an overcurrent fault is likely to occur when the inverter is stopped. If this parameter is set to 0, the shutdown DC braking is invalid.

DC brake holding time at stop: refers to the duration of DC braking current when stopped. When the braking time is 0.0 seconds, there is no DC braking process, that is, the DC braking function is invalid. If this parameter is set to 0, the shutdown DC braking is invalid.

F1-15	Reserved		
F1-16	Acceleration and deceleration	Setting range: 0000 \sim 0012	Default: 0010
F1-17	Acceleration start S curve time	Setting range: 0.00~10.00s	Default: 0.10s
F1-18	Acceleration end S curve time	Setting range: 0.00~10.00s	Default: 0.10s
F1-19	Deceleration start S curve time	Setting range: 0.00~10.00s	Default: 0.10s
F1-20	Deceleration end S curve time	Setting range: 0.00~10.00s	Default: 0.10s

Acceleration and deceleration options

Units of LED: Base frequency of acceleration and deceleration time

This parameter is used to select the basis for acceleration / deceleration time.

0: Maximum frequency The reference for acceleration and deceleration time is the maximum frequency **[F0-09]**.

1: Fixed frequency The reference for acceleration and deceleration time is a fixed frequency of 50.00 Hz.

2: Set frequency The reference of acceleration and deceleration time is set frequency. If the set frequency changes frequently, the acceleration of the motor will change, so please pay attention when applying.

Tens of LEDs: acceleration and deceleration

This series of inverters provides 2 kinds of acceleration and deceleration methods; in normal start, stop, forward and reverse, acceleration and deceleration, both acceleration and deceleration methods are effective.

0: Straight line Generally applicable to general-purpose loads.

1: S curve S-type acceleration and deceleration curves are mainly provided for loads that need to slow down noise and vibration during acceleration and deceleration, reduce start-stop impact or low frequency, need to decrease torque, and high frequency require short-term acceleration.

Hundreds of LEDs: reserved

Thousands of LEDs: reserved

The characteristics of the S curve during forward rotation and reverse rotation are shown in the figure

below:

After setting the S curve, the acceleration and deceleration time will be extended as follows: Acceleration time = selected acceleration time + ([F1-17] + [F1-18]) / 2 Deceleration time = selected deceleration time + ([F1-19] + [F1-20]) / 2

F1-21	Acceleration time 1	Setting range: 0.01~650.00s	Default: 10.00s	
F1-22	Deceleration time 1	Setting range: 0.01 \sim 650.00s	Default: 10.00s	
F1-23	Acceleration time 2	Setting range: 0.01 \sim 650.00s	Default: 10.00s	
F1-24	Deceleration time 2	Setting range: 0.01 \sim 650.00s	Default: 10.00s	
F1-25	Acceleration time 3	Setting range: 0.01 \sim 650.00s	Default: 10.00s	
F1-26	Deceleration time 3	Setting range: 0.01 \sim 650.00s	Default: 10.00s	

Acceleration time 2/3/4: When parameter [F1-16] LED unit is set to "0", it means the time required for the output frequency to accelerate from 0.00Hz to the maximum frequency [F0-09]; 16] When the LED unit digit is set to "1", it refers to the time required for the output frequency to accelerate from 0.00Hz to 50.00Hz; see the parameter [F1-16] for details.

Deceleration time 1/2/3: when the parameter [F1-16] LED unit is set to "0", it refers to the time required for the output frequency to decelerate from the maximum frequency [F0-09] to 0.00Hz; when the parameter [F1-16] When the LED unit digit is set to "1", it refers to the time required for the output frequency to decelerate from 50.00Hz to 0.00Hz; see parameter [F1-16] for details.

The acceleration / deceleration time 1/2/3 can only switch the current acceleration / deceleration time group (PLC program) through the on-off combination of the multi-function terminals "Acceleration / deceleration time selection terminal 1" and "Acceleration / deceleration time selection terminal 2" and (**COM**) Except for operation);

If the acceleration / deceleration time selection terminal is not set, the factory default is that acceleration / deceleration time 1 is valid, and the inverter performs acceleration / deceleration according to acceleration / deceleration time 1.

For the definition of acceleration and deceleration time for PLC program operation, please refer to parameter [FC-31 \sim FC-45] for details.

The jog acceleration and deceleration time is not within this range, and the jog acceleration and deceleration time are individually set by **[F1-39, F1-40]**.

Comparison table of acceleration and deceleration time selection:

Terminal 2	Terminal 1	Acceleration and deceleration time selection
OFF	OFF	Acceleration time 0 / Deceleration time 0
OFF	ON	Acceleration time 1 / Deceleration time 1
ON	OFF	Acceleration time 2 / Deceleration time 2
ON	ON	Acceleration time 3 / Deceleration time 3

If you have doubts about the above table, please refer to the "FC" parameter group's multi-speed sequence diagram for multi-speed.

F1-27	Emergency stop deceleration time	Setting range: 0.01~650.00s	Default: 1.00s
-------	----------------------------------	-----------------------------	----------------

Used to set the deceleration time during emergency stop. The definition of emergency stop time is the same as acceleration and deceleration time.

During the emergency stop function, if the multi-function output terminal has been set to emergency stop, the multi-function output terminal will always output a valid signal during the emergency stop process. See the parameters [F2-45 \sim F2-47] for details.

F1-28	Forward and reverse dead time	Setting range: 0.0 \sim 120.0s	Default: 0.0s
-------	-------------------------------	----------------------------------	---------------

Forward and reverse dead time: This function is defined as the transition time that the inverter waits at 0.0

Hz during forward to reverse rotation, or from reverse to forward rotation. It is set for equipment with

mechanical dead zone when changing the load.

F1-29	Zero speed torque frequency threshold	Setting range: 0.00 \sim 10.00Hz	Default: 0.50Hz
F1-30	Zero speed torque retention coefficient	Setting range: 0.0~150.0%	Default: 60.0%
F1-31	Zero speed torque holding time	Setting range: 0.0 \sim 6000.0s	Default: 0.0s

Judging the entry condition of the zero-speed torque function:

1. During the speed-up process of the inverter, when the given frequency is less than the start frequency, the inverter output is zero, but the zero-speed torque function is not entered.

2. During the speed-up process of the inverter, when the given frequency is less than or equal to the zero-speed torque frequency threshold, the output frequency is 0 Hz, and the zero-speed torque function is entered. When the given frequency is greater than the zero-speed torque frequency threshold, the zero-speed torque holding function will not be entered.

3. During the forward / reverse switching process of the inverter during normal operation, when the output frequency is less than [F1-29], the zero frequency is output and the zero-speed torque function is entered. When the zero-speed torque holding time [F1-31] is greater than the

positive and negative When turning the dead time [F1-28], the hold time is determined by the forward and reverse dead time [F1-28].

4. During the normal operation of the inverter, change the frequency setting value during the speed-up and speed-down operation. When the speed is reduced, it will output zero frequency after [F1-29] and enter the zero-speed torque function. Speed torque function.

5. During the inverter's stop and deceleration process, when the output frequency is less than the zero-speed torque frequency threshold [F1-29], the inverter's output will be zero-stop and will not enter the zero-speed torque function. If the stop DC braking start frequency is greater than [F1-29], when the output frequency is less than the stop DC braking start frequency, it will enter the stop DC braking state.

- Zero-speed torque retention coefficient: effective under open-loop V / F or open-loop vector, set the output torque of the inverter when running at zero speed, 100% corresponds to the rated current of the motor. In closed-loop control mode, the magnitude of zero-speed torque is determined by the motor load. If the torque setting is large or the duration is long during use, attention should be paid to the heat dissipation of the motor.
- Zero-speed torque holding time: Set the inverter to enter the zero-speed torque holding time. The timing starts when the running frequency is 0 Hz, and the inverter stops output after the time reaches the set

zero-speed holding torque time. Among them, the effective timing value is 0 \sim 5999.9s. The parameter is set within the effective timing value. The inverter counts at the set time. After the time expires, the inverter terminates the zero-speed torque maintenance.

If the parameter setting is equal to 6000.0s, the frequency converter does not perform timing and the default is long-term effective. Only after the stop command is given or a non-zero operating frequency is given, the zero speed torgue retention is terminated.

Note: If the zero-speed holding torque is set too large or the zero-speed holding torque time is set too long, pay attention to the temperature rise of the motor. If the temperature rise of the motor is large, it is necessary to improve the heat dissipation of the motor and add the heat dissipation equipment.

F1-32~F1-34		Reserved	
F1-35	Action selection after power failure	Setting range: 0~1	Default: 0
F1-36	Waiting time after power failure	Setting range: 0.00 \sim 60.00s	Default: 0.50s

Action selection after power failure:

0: Invalid The inverter must run after receiving the running command after power off.

During keyboard operation control, RS485 communication control or optional card operation, if the inverter loses power, the operation command is automatically cleared.

1: Valid If the inverter is in the running state before the power is cut off, after the power is restored, after the waiting time set by [F1-36], the inverter will automatically start the speed tracking. During the waiting time after power failure and restart, the inverter does not accept the running command, but if the stop command is input during this period, the inverter will be released from the restart state. The setting principle of the waiting time for power failure and restart [F1-36] is based on factors such as the work recovery preparation time of other equipment related to the inverter after power is restored.

Note: The function of restart after power failure can enable the inverter to start running automatically after power is restored. Therefore, it is very accidental, so please adopt it with caution for personal and equipment safety.

F1-37		Reserved	
F1-38	Jog running frequency setting	Setting range: 0.00 ~ Maximum frequency	Default: 5.00Hz
F1-39	Jog acceleration time	Setting range: 0.01~650.00s	Default: 10.00s
F1-40	Jog deceleration time	Setting range: 0.01 \sim 650.00s	Default: 10.00s

Jog running frequency setting: Set the output frequency of the inverter when jogging.

- Jog acceleration time: when the parameter [F1-16] LED unit is set to "0", it means the time required for the output frequency to accelerate from 0.00Hz to the maximum frequency [F0-09]; when the parameter [F1-16] LED When the ones place is set to "1", it refers to the time required for the output frequency to accelerate from 0.00Hz to 50.00Hz; see parameter [F1-16] for details.
- Jog deceleration time: when the parameter [F1-16] LED unit is set to "0", it means the time required for the output frequency to decelerate from the maximum frequency [F0-09] to 0.00Hz; when the parameter [F1-16] LED When the ones place is set to "1", it refers to the time required for the output frequency to decelerate from 50.00Hz to 0.00Hz; see parameter [F1-16] for details.

The jog frequency has the highest priority command right (terminal jog). That is, in any state, once the jog command is valid, it immediately runs from the current running frequency to the jog frequency with the jog acceleration / deceleration time. Jog acceleration / deceleration time is defined the same as acceleration / deceleration time. The inverter can be controlled by the keyboard, control terminals, communication

commands or the jog operation command of the optional card.

Note: The setting value of the jog operating frequency is only limited by the maximum frequency of [F0-09]. When the set jog frequency is greater than the upper limit frequency of [F0-11], the actual jog output frequency of the inverter during jog operation Limited by the upper limit frequency. Only the terminal jog running priority is not limited by the run command channel, other jog commands only have priority when they are the same as the run command channel. For example, the jog operation of the keyboard is only valid when the keyboard control is running.

4.3 Switching terminal parameters

F2-00	Multi-function input terminal 1(X1)	Setting range: $0{\sim}63$	Default: 1
F2-01	Multi-function input terminal 2(X2)		Default: 2
F2-02	Multi-function input terminal 3(X3)		Default: 4
F2-03	Multi-function input terminal 4(X4)		Default: 5
F2-04	Multi-function input terminal 5(X5)		Default: 6

This machine has 5 multi-function input terminals, and the functions of multi-function input terminals (X1-X5) can be defined by parameters **[F2-00** \sim **F2-04]**. The characteristics and detection delay of the multi-function input terminals can be set through the parameters **[F2-08** \sim **F2-19]**. For details, see the parameters **[F2-08** \sim **F2-19]**. Among them, X5 and high-speed pulse input HDI share an external input terminal X5 / HDI. When there is a function code to select HDI, the external terminal is used as HDI input, otherwise it is used as X5 input. For example, when **[F2-04]** = 0, the terminal X5 / HDI will be valid as the HDI input, and at this time, the digital signal X5 input will not be accepted.

The multi-function input terminals are rich in functions and can be easily set and selected according to needs. The set values and functions are shown in the table below:

Set value	Set value	Set value	Set value	
0	No function	27	PID feedback switching 1	
1	Forward run	28	PID feedback switching 2	
2	Reverse run	29	PID feedback switching 3	
3	Three-wire operation control (Xi)	30	Program operation (PLC) pause	
4	Jog forward	31	Program operation (PLC) restart	
5	Reverse jog	32	Acceleration and deceleration time selection terminal 1	
6	Free parking	33	Acceleration and deceleration time selection terminal 2	
7	Emergency stop	34	Acceleration and deceleration pause	
8	Fault reset	35	Swing frequency input	
9	External fault input	36	Swing frequency pause	
10	Increasing frequency (UP)	37	Swing frequency reset	
11	Decreasing frequency (DW)	40	Timer trigger terminal	
12	Frequency increasing and decreasing clearing (UP / DW clearing)	41	Timer clear terminal	
13	Channel A switches to channel B	42	Counter clock input terminal	
14	Switch the frequency channel combination to A	43	Counter clear terminal	
15	Switch the frequency channel combination to B	44	DC braking command	
16	Multi-speed terminal 1	45	Pre-excitation command terminal	
17	Multi-speed terminal 2	46	Motor selection terminal	

18	Multi-speed terminal 3	47	Run pause	
19	Multi-speed terminal 4	48	Command channel switch to keyboard	
20	PID control canceled	49	Command channel switch to terminal	
21	PID control pause	50	Command channel switch to communication	
22	PID characteristic switching	51	Command channel switch to expansion card	
23	PID gain switching	52	Operation prohibited	
24	PID given switch 1	53	Forward prohibition	
25	PID given switch 2	54	Reverse prohibition	
26	PID given switch 3	55	Reserved	

- **0:** No function means the terminal is invalid. If the terminal function is idle, it is recommended to set to "0" to prevent misoperation.
- 1: Forward running When the running command is given by the terminal, if [F2-20] is set to two-wire system 1, and the terminal is valid, the inverter will run forward. For other control modes, please refer to parameter [F2-20].
- 2: Reverse running When the running command is given by the terminal, if [F2-20] is set to two-wire system 1, and the terminal is valid, the inverter will run in reverse. For other control modes, please refer to parameter [F2-20].
- **3:** Three-wire operation control (Xi) When the operation command is given by the terminal, if **[F2-20]** is set to three-wire system 1/2, this terminal is the three-wire operation control terminal (Xi). For specific functions, see the parameter **[F2 -20]**.

4: Forward jog

5: reverse jog

Forward and reverse jog command input port. When this terminal is valid, the inverter jogs. The terminal jog command has the highest priority. For detailed setting of jog parameters, please refer to [F1-38 \sim F1-40].

6: Free stop Free stop command input port. When this terminal is valid, the inverter immediately blocks the output, and the motor is in free running state.

When the free stop terminal is always valid, the inverter will not accept any start command and will remain stopped. When the terminal two-wire control operation, after the free stop terminal command is released, whether to restore the original operation command, refer to the parameter setting of parameter **[F2-21]**. When the keyboard, RS485, optional card and terminal three-wire system control operation, after the free stop terminal command is released, the original operation command will not be restored. If you need to start the inverter, you need to re-enter the operation command.

7: Emergency stop If an emergency stop command is input during the operation of the inverter, the inverter will decelerate to stop with the deceleration time set by [F1-27]. For details, please refer to [F1-27] Emergency stop deceleration time. After the emergency stop command is entered, it cannot be restarted until the inverter is completely stopped. If the stop mode [F1-10] is set to free stop, the inverter still performs emergency stop deceleration according to the emergency stop time. When the emergency stop terminal is always valid, the inverter will not accept any start command and keep the stop command is released, whether to restore the original operation command, refer to the parameter setting of [F2-27].

When the keyboard, communication, optional card and terminal three-wire system control operation, after the emergency stop terminal command is released, the original operation command will not be restored. If you need to start the inverter, you need to re-enter the operation command.

- Note: Sudden deceleration may cause the inverter to produce overvoltage faults. When an overvoltage fault occurs, the output of the inverter will be cut off and the motor will be in a free running state, which will cause the motor to be uncontrollable. Therefore, when using the emergency stop function, please set an appropriate deceleration time in [F1-27], or use it in conjunction with the energy consumption braking function.
- 8: Fault reset When the inverter generates a fault alarm, the terminal can be used to reset the fault. When the terminal two-wire control is running, after the fault is reset, whether to restore the original operation command, please refer to the parameter setting of [F2-27].
- **9: External fault input** Through this terminal, you can input the fault signal of the external device, which is convenient for the inverter to monitor and protect the external device. After the inverter receives the external fault input signal, it immediately blocks the output, the motor is in a free running state, and displays the fault message E. EF.
- 10: Increasing frequency (UP)

11: Decreasing frequency (DW)

12: frequency increasing and decreasing clearing (UP / DW clearing)

The increase and decrease (UP) and decrease (DW) of the given frequency are realized through the control terminal. It is only valid when parameter **[F0-03]** is set to "7" terminal UP / DW control. The memory and clearing method after adjusting frequency by UP and DW can be set through **[F2-36]**, see parameter **[F2-36]** for details; the acceleration / deceleration rate of the given frequency controlled by terminal UP / DW control is set by **[F2-37]**.

The frequency can be adjusted by UP and DW at any time by the "frequency increasing and

decreasingclearing (UP / DW clearing)" terminal to clear its given frequency.

- 13: Switch channel A to channel B
- 14: Frequency channel combination is switched to channel A

15: Switch the frequency channel combination to B

Switch the frequency given channel combination through the terminal.

- 16: Multi-speed terminal 1
- 17: Multi-speed terminal 2
- 18: Multi-speed terminal 3

19: Multi-speed terminal 4

The input port of the multi-segment speed command, the code combination realizes 15-segment speed; the multi-segment speed command has the priority right next to the jog command. For details, please refer to the detailed description of parameter multi-speed and PLC function parameter "FC" group parameters.

- 20: PID control canceled When the frequency reference main channel selection [F0-03] is set to "8" PID control reference timing, if this terminal is valid, the PID function can be invalidated, the frequency reference main channel reference frequency becomes 0.00 Hz. When this terminal is invalid, PID restarts to calculate the frequency given by the frequency given main channel.
- **21: PID control pause** When the frequency given channel selects the PID control given time, if this terminal is valid, the PID adjustment can be temporarily disabled, and the PID adjustment frequency immediately before the terminal becomes effective remains unchanged. When this terminal is invalid, PID restarts to calculate the given frequency.
- 22: PID characteristic switching When the frequency setting main channel selection [F0-03] is set to "8" PID control setting, if this terminal is valid, the characteristic of the LED unit setting of parameter [Fb-07] will change After the terminal is invalid, the PID output characteristic will change to the one set by the LED unit digit of [Fb-07].

23: PID gain switching

This terminal selection is only valid when the gain switching condition [Fb-22] is set to "1". When this function is invalid, the PID adjustment proportional, integral, and derivative parameters are [Fb-11 ~ Fb-13], and when valid, it is [Fb -14 ~ Fb-16].

- 24: PID reference switching 1
- 25: PID given switch 2
- 26: PID reference switching 3

When the given signal source of PID controller [Fb-00] is set to "7" terminal selection, the channel of the given signal source of PID controller is switched through this group of terminals. For details, please refer to parameter **[Fb-00]**.

- 27: PID feedback switching 1
- 28: PID feedback switching 2

29: PID feedback switching 3

When the PID controller feedback signal source **[Fb-03]** is set to "7" terminal selection, the channel of the PID controller feedback signal source is switched through this group of terminals. For details, see parameter **[Fb-03]**.

- **30: Program operation (PLC) pause** When the frequency setting main channel selection **[F0-03]** is set to "8" Program control (PLC) reference, during the process of program operation, this signal is effective to make the program operation pause, frequency conversion The device runs at the current frequency. After the signal disappears, it continues to run as before the pause. For detailed parameters of the program control (PLC), please refer to the "FC" group parameters of the multi-speed and PLC functions.
- **31: Program running (PLC) restart** When the frequency setting main channel selection **[F0-03]** is set to "8" Program control (PLC) setting, this signal is effective to make the program run during the stop state and the process of program running Restart and start operation from the first stage. For detailed parameters of the program control (PLC), please refer to the "FC" group parameters of the multi-speed and PLC functions.
- 32: Acceleration and deceleration time selection terminal 1

33: Acceleration and deceleration time selection terminal 2

- Acceleration and deceleration time selection command input port, code combination to achieve 4 stages of acceleration and deceleration selection. When the parameter is not set and the terminal is invalid, the default selection is that acceleration and deceleration time 0 is valid. For details, please refer to the detailed description of parameters [F1-21 ~ F1-26].
- **34:** Acceleration and deceleration pause In the running state of the inverter, when this terminal is valid, the inverter stops acceleration and deceleration and keeps the current speed unchanged.

- 35: Swing frequency input When swing frequency control is set to manual input, when this terminal is valid, the swing frequency function is valid and the inverter starts swing frequency operation. See the parameter [FC-49 ~ FC-55] for details.
- 36: Suspension of wobble frequency During wobble frequency control, when this terminal is valid, the inverter keeps the current output frequency unchanged. After the terminal command is cancelled, the swing frequency operation is resumed. See the parameter [FC-49 ~ FC-55] for details.
- 37: Swing frequency reset During swing frequency control, when this terminal is valid, the inverter returns to the center frequency and runs. After the terminal command is cancelled, the swing frequency operation is resumed. See the parameter [FC-49 ~ FC-55] for details.
- 40: Timer trigger terminal The port that starts the timer to start the timekeeping action, and the closure is valid. See the parameters [F2-39 ∼ F2-40] for details.
- 41: Timer clear terminal The timer record of the timer is cleared, and the instantaneous closing is effective.
 See the parameters [F2-39 ~ F2-40] for details.
- 42: Counter clock input terminal For the clock input terminal of the counter function, please refer to parameter [F2-41 ∼ F2-42] for details.
- 43: Counter reset terminal The counter record of the counter is cleared, and the instantaneous closing is effective. For details, please refer to the parameter [F2-41 ∼ F2-42].
- 44: DC braking command When the inverter is stopped, the DC braking function of the inverter can be started. For the current during DC braking, please refer to parameter [F1-12] the setting value of DC braking current at shutdown. If a run or jog command is input, the DC brake will be released.

- **45: Pre-excitation command terminal** This function is only valid when the asynchronous machine is vector controlled. When the inverter is stopped, the pre-excitation function of the inverter can be started. If a run or jog command is input, the pre-excitation will be released.
- 47: Operation pause
- 48: Command channel switch to keyboard
- 49: Command channel switch to terminal
- 50: Command channel switch to communication

51: Command channel switch to expansion card

Command channel switching terminal, can switch to 4 kinds of command given, the effective priority of the terminal is from high to low in order of keyboard, terminal, communication, expansion card.

52: Operation prohibited

53: forward transfer prohibited

54: Reverse prohibition

When the operation prohibition terminal selection is valid, the operation command is invalid in the stop state, and the free stop in the operation state;

When the forward prohibition terminal selection is valid, the forward run command is invalid in the stop state, and the free stop is stopped in the forward run state;

When the reverse prohibition terminal selection is valid, the reverse run command is invalid in the stop state, and free stop in the reverse run state;

Note: Uninterpreted codes in the middle are reserved options.

F2-05 \sim F2-07		Reserved	
F2-08	X1 \sim X4 terminal characteristic selection	Setting range: 0000 \sim 1111	Default: 0000

X1 ~ X4 terminal characteristics selection: set the characteristics of multi-function input terminals X1, X2, X3, X4 respectively.

LED unit: X1 terminal

0: closing is effective

1: Disconnect is effective

Tens of LED: X2 terminal

0: closing is effective

1: Disconnect is effective

Hundreds of LEDs: X3 terminal

- 0: closing is effective
- 1: Disconnect is effective

Thousands of LEDs: X4 terminal

0: closing is effective

1: Disconnect is effective

F2-09	X5 terminal feature selection	Setting range: 0000 \sim 1111	Default: 0000		
The select	The selection of terminal characteristics is the same as above.				
F2-10	X1 effective detection delay	Setting range: 0.000 \sim 6.000s	Default: 0.010		
F2-11	X1 invalid detection delay	Setting range: 0.000 \sim 6.000s	Default: 0.010		
F2-12	X2 effective detection delay	Setting range: 0.000 \sim 6.000s	Default: 0.010		
F2-13	X2 invalid detection delay	Setting range: 0.000~6.000s	Default: 0.010		
F2-14	X3 effective detection delay	Setting range: 0.000 \sim 6.000s	Default: 0.010		
F2-15	X3 invalid detection delay	Setting range: 0.000 \sim 6.000s	Default: 0.010		

F2-16	X4 effective detection delay	Setting range: 0.000 \sim 6.000s	Default: 0.010
F2-17	X4 invalid detection delay	Setting range: 0.000 \sim 6.000s	Default: 0.010
F2-18	X5 effective detection delay	Setting range: 0.000 \sim 6.000s	Default: 0.010
F2-19	X5 invalid detection delay	Setting range: 0.000 \sim 6.000s	Default: 0.010

Effective detection delay: The delay time corresponding to the transition of the input terminals X1 $\,\sim\,$ X5 from the invalid state to the valid state.

Invalid detection delay: the delay time corresponding to the transition of the input terminals X1 $\,\sim\,$ X5 from the valid state to the invalid state.

F2-20	Terminal control operation mode	Setting range: 0 \sim 3	Default: 0
-------	---------------------------------	---------------------------	------------

This parameter defines four different ways to control the operation of the inverter through external terminals.

0: Two-wire control 1: Operation and direction are unified. This mode is the most commonly used two-wire mode. The factory default is to determine the forward and reverse running of the motor by the X1 (forward running) and X2 (reverse running) terminal commands. As shown below:

Schematic diagram of two-wire control 1

1: Two-wire control 2: Separation of operation and direction. The forward run terminal X1 (forward run) defined when using this mode is the run enable terminal. The definition of the direction is determined by the state of the reverse run terminal X2 (reverse run). As shown below:

Schematic diagram of two-wire control 2

2: Three-wire control 1: In this mode, the three-wire operation control terminal (Xi) is a stop operation terminal. The operation command is generated by the forward rotation operation terminal X1 (forward rotation operation), and the direction is controlled by the reverse rotation operation terminal X2 (reverse rotation operation). The three-wire operation control terminal (Xi) is a valid input.

Schematic diagram of three-wire control 1

3: Three-wire control 2: In this mode, the three-wire operation control terminal (Xi) is a stop operation terminal. The operation command is generated by the forward rotation operation terminal X1 (forward rotation operation) or the reverse rotation operation terminal X2 (reverse operation), and both control the operation direction at the same time.

Schematic diagram of three-wire control 2

Tips: SB1: stop button; SB2: forward running button; SB3: reverse running button; "Xi" is the multi-function input terminal set to "3" [three-wire operation control (Xi)].
F2-21	Terminal start protection	Setting range: 0000~0111	Default: 0111
-------	---------------------------	--------------------------	---------------

The following states are only valid when the terminal control operation [F0-02] is set to "1" and the two-wire control mode, that is, [F2-26] is set to "0" or "1". In the three-wire control mode, the operation command must be re-entered.

LED unit place: terminal start protection when exiting abnormal

0: close

1: open

Tens of LEDs: Start protection of the jog terminal when exiting abnormal

0: close

1: open

Hundreds of LEDs: start protection when the command channel is switched to the terminal

0: close

1: open

Thousands of LEDs: reserved

Note: When the start-stop command channel is a terminal and the control mode is a two-wire type, when the terminal running command is in a valid state, the inverter will stop due to an abnormality. After the abnormality disappears, if the protection is turned off, the inverter immediately starts the motor to enter the running state; if the protection is turned on, the previous operation command must be cancelled before the motor can be started in response to the new operation command.

F2-22	HDI input minimum frequency	Setting range: 0.00~50.00kHz	Default: 0.00kHz		
F2-23	HDI minimum frequency corresponding setting	Setting range: 0.00~100.00%	Default: 0.00%		
F2-24	HDI input maximum frequency	Setting range: 0.00~50.00kHz	Default: 50.00kHz		
F2-25	HDI maximum frequency corresponding setting	Setting range: 0.00~100.00%	Default: 100.00%		
F2-26	HDI filter time	Setting range: 0.00 \sim 9.00s	Default: 0.10s		
F2-27	HDI cutoff frequency	Setting range: 0.000 \sim 1.000kHz	Default: 0.010kHz		

HDI input minimum frequency: This function defines the minimum frequency accepted by the pulse input terminal (HDI). Frequency signals lower than this value will be processed by the input minimum frequency.

- **HDI minimum frequency corresponding setting:** used to set the percentage of the setting value corresponding to the minimum input frequency of HDI.
- **HDI input maximum frequency:** This function defines the maximum frequency accepted by the pulse input terminal (HDI). Frequency signals higher than this value will be processed by the inverter at the input maximum frequency.
- **HDI maximum frequency corresponding setting:** used to set the percentage of the setting value corresponding to the HDI maximum input frequency.
- **HDI filter time:** This parameter is defined as the size of the input pulse signal to filter, used to eliminate interference signals. The longer the filtering time, the stronger the anti-interference ability, but the response speed becomes slower; the shorter the filtering time, the anti-interference ability becomes weaker, but the response speed becomes faster.
- **HDI cut-off frequency:** This parameter defines the minimum recognition pulse frequency of the HDI port. If the pulse frequency is lower than this parameter, the inverter will no longer recognize it, and it will be processed according to the "0Hz" frequency value. The smaller the value is set, the lower the pulse frequency that the HDI port can receive, but when the pulse frequency of the HDI port disappears, the longer the inverter judges that the pulse input is "0Hz".

F2-28	Terminal UP / DW control mode	Setting range: 0 \sim 2	Default: 0
F2-29	Terminal UP / DW control frequency increase and decrease rate	Setting range: 0.01~50.00Hz/s	Default: 0.50Hz/s

Terminal UP / DW frequency adjustment selection

- 0: Power-off shutdown storage When the terminal UP / DW is adjusted, the machine keeps the frequency record after power failure or stop. During power-on operation, the inverter performs UP / DW adjustment operation from the frequency at the last stop.
- 1: No storage after power off, storage during shutdown When the terminal UP / DW is adjusted, the frequency record is kept after the machine stops. In the next operation, the inverter performs UP / DW adjustment operation from the frequency of the last stop. No record is saved after a power failure, and operation starts from 0.00 Hz.
- 2: The operation is valid and the shutdown is cleared when the terminal is adjusted by UP / DW. The frequency record is not maintained after the machine stops or is powered off. In the next operation, the inverter performs UP / DW adjustment operation from 0.00Hz.

Terminal UP / DW frequency increase / decrease speed: This function defines the change rate of the given frequency when the terminal UP / DW is adjusted.

F2-30		Reserved	
F2-31	Timer time unit	Setting range: 0~2	Default: 0
F2-32	Timer setting	Setting range: 0 \sim 65000	Default: 0

Timer time unit: This function is used to set the timer time unit of the inverter timer.

0: second The time unit of timer timer is second.

1: minute The time unit for timer timing is minutes.

2: hour The time unit of timer timer is hour.

Timer setting value:

This parameter is used to set the timing time of the inverter. The start of the timer is completed by the external timer trigger terminal of the timer (the trigger terminal is selected by [F2-00 \sim F2-04]), and the time is counted from the reception of the external trigger signal. (The output terminal is selected by [F2-39 \sim F2-41]) The pulse signal with a width of 1 second is output.

When the trigger terminal is invalid, the timer keeps the current timing value, and continues to count time after the trigger terminal is valid.

F2-33		Reserved	
F2-34	Counter input frequency division	Setting range: 0 \sim 6000	Default: 0
F2-35	Counter maximum	Setting range: 0 \sim 65000	Default: 1000
F2-36	Counter set value	Setting range: 0 \sim 65000	Default: 500

This parameter specifies the counting operation of the internal counter. The counting clock input terminal of the counter is selected by the parameter [F2-00 \sim F2-04].

Maximum value of the counter: When the count value of the counter to the external clock reaches the value specified by the parameter [F2-35], a width is output at the corresponding output terminal (the output terminal is selected by [F2-39 ~ F2-41]) equal to the external clock period Valid signal. That is, when the next count signal is input, the output terminal stops outputting the valid signal.

Counter setting value: When the count value of the counter to the external clock reaches the value specified by parameter [F2-36]. Output valid signal at the corresponding output terminal (the output terminal is

selected by [F2-39 ~ F2-41]), continue to count to the value specified by parameter [F2-35], and cause the output valid signal to cancel when the counter is cleared.

At any time, the count value of the counter can be cleared through the counter clear terminal set by the multi-function input terminals [F2-00 \sim F2-04].

Tip: The counter can work alone without being limited by the running state of the inverter. When some working conditions require counting, the counter in the inverter can be used, and the count value can be displayed in [C-21].

F2-37		Reserved	
F2-38	Output terminal polarity selection	Setting range: 0000 \sim 0111	Default: 0000

LED unit: Y terminal

- 0: positive polarity
- 1: negative polarity

Tens of LED: Relay output terminal 1

- 0: positive polarity
- 1: negative polarity

Hundreds of LEDs: Relay output terminal 2

- 0: positive polarity
- 1: negative polarity

Thousands of LEDs: reserved

F2-39	Output terminal 1		Default: 1		
F2-40	Relay output 1	Setting range: see attached table 4.4	Default: 4		
F2-41	Relay output 2		Default: 11		
F2-42	Y1 output delay time	Setting range: 0.000~6.000s	Default: 0.010s		
F2-43	Relay 1 output delay	Setting range: 0.000 \sim 6.000s	Default: 0.010s		
F2-44	Relay 2 output delay	Setting range: 0.000 \sim 6.000s	Default: 0.010s		

When the internal logic operation of the inverter wants to change the Y terminal state, the actual state of

the Y terminal is output after the set delay time. The precautions for the delay time are the same as the input terminal, and the relay output terminal is the same.

F2-45	Output frequency level 1 (FDT1)	Setting range: 0.00~maximum frequency	Default: 30.00Hz
-------	---------------------------------	---------------------------------------	------------------

F2-46	FDT1 lag	Setting range: 0.00 \sim maximum frequency	Default: 1.00Hz
F2-47	Output frequency level 2 (FDT2)	Setting range: 0.00 \sim maximum frequency	Default: 50.00Hz
F2-48	FDT2 lag	Setting range: 0.00~maximum frequency	Default: 1.00Hz

During acceleration, when the output frequency of the inverter exceeds the frequency detection level [F2-45] / [F2-47] setting value, after the lag frequency set by [F2-46] / [F2-48], the output Effective signal; when decelerating, when the output frequency of the inverter is lower than the frequency detection level, after the same lag frequency, the invalid signal is output. The output frequency detection is shown below:

F2-49	The detection frequency reaches the given frequency	Setting range: 0.00 \sim 50.00Hz	Default: 2.00Hz					
When the output frequency of the inverter reaches or is close to the given frequency value, the output								

When the output frequency of the inverter reaches or is close to the given frequency value, the output terminal (Y / TA1-TB1-TC1, TA2-TB2-TC2) is selected to output a valid signal when "the given frequency arrives"; this function can be adjusted for the detection amplitude of the up and down deviation. The frequency arrival output is shown below:

4.4 Analog terminal parameters

F3-00	AI1 lower limit	Setting range: 0.00 \sim 10.00V	Default: 0.00V
F3-01	Al1 lower limit corresponding setting	Setting range: -100.00 \sim 100.00%	Default: 0.00%
F3-02	AI1 upper limit	Setting range: 0.00 \sim 10.00V	Default: 10.00V
F3-03	AI1 upper limit corresponding setting	Setting range: -100.00 \sim 100.00%	Default: 100.00%
F3-04	AI1 filter time	Setting range: 0.00 \sim 6.00s	Default: 0.10s
F3-05	Al1 voltage / current selection	Setting range: 0: voltage 1: current	Default: 0

All lower limit value: This function defines the signal received by the analog input terminal (Al1). The voltage signal lower than this value will be processed according to the Al1 lower limit value.

All lower limit corresponding setting: used to set the percentage of the set value corresponding to the All lower limit input analog quantity.

- Al1 upper limit value: This function defines the signal received by the analog input terminal (Al1). If the voltage signal exceeds this value, the inverter will process it according to the Al1 upper limit value. Al1 upper limit corresponding setting: used to set the percentage of Al1 upper limit input analog corresponding to the set value.
- Al1 filter time: This parameter is defined as the size of the (Al1) input analog signal that is used to eliminate interference signals. The longer the filtering time, the stronger the anti-interference ability, but the response speed becomes slower; the shorter the filtering time, the anti-interference ability becomes weaker, but the response speed becomes faster.

Schematic diagram of analog given frequency

Tips:	Set	the	freque	ncy	source	to	select	Al1	as	the	timin	g, se	t the	frequer	icy t	o be	adjuste	d to	зa
negati	ive	value	e, and	coo	perate	with	n [F0-1	6] h	unc	dred	digit	selec	tion	frequen	cy co	ontro	directi	on	for
bipola	ır ad	ljustr	nent.																

F3-06	Al2 lower limit	Setting range: 0.00~10.00V	Default: 0.00V
F3-07	Al2 lower limit corresponding setting	Setting range: 0.00 \sim 100.00%	Default: 0.00%
F3-08	Al2 upper limit	Setting range: 0.00~10.00V	Default: 10.00V
F3-09	Al2 upper limit corresponding setting	Setting range: 0.00 \sim 100.00%	Default: 100.00%
F3-10	AI2 filter time	Setting range: 0.00~10.00s	Default: 0.010s
F3-11	AI2 voltage / current selection	Setting range: 0: voltage 1: current	Default: 0
F3-12	Al1 terminal function selection	See X terminal function	Default: 0

F3-13	AI1 high level setting	0.00~100.00%	Default: 70.00%
F3-14	AI1 low level setting	0.00~100.00%	Default: 30.00%
F3-15	Al2 terminal function selection	See X terminal function	Default: 0
F3-16	Al2 high level setting	0.00~100.00%	Default: 70.00%
F3-17	AI2 low level setting	0.00~100.00%	Default: 30.00%

F3-18	Analog quantity to set the terminal e	effective st	tate	Setting range: 00	00~011	11 Default: 0000		
LED unit: 0: low 1: higi	LED unit: Al1 0: low level 1: high level							
Tens of LI	EDs: Al2							
0: IOW 1: hial	/ level							
Hundreds	Thigh level Hundreds of LEDs: reserved Thousands of LEDs: reserved							
F3-19	Analog input curve selection S	etting ran	ge: 000	0~0222		Default: 0000		
LED unit: Tens of LI LED hund 0: Straight Analog Re	Al1 EDs: Al2 Ireds / thousands reserved t line By default, the normal two-p ference Frequency". multi-point disconnection pleases	point straig	ght line	can be referred t	to the at	cove "Simulation of \sim F3-281		
2: Curve 2	multi-point disconnection, please s	see the de	scriptic	on of function code	[F3-29	~ F3-36].		
F3-20		Re	eserved		-	-		
F3-21	Curve 1 lower limit	Se	etting ra	nge: 0.00~10.00\	/	Default: 0.00V		
F3-22	Curve 1 lower limit correspondent	ding Se	etting ra	inge: 0.00~100.00)%	Default: 0.0%		
F3-23	Curve 1 Inflection point 1 Input volta	ige Se	etting ra	nge: 0.00~10.00\	/	Default: 3.00V		
F3-24	Curve 1 turning point 1 correspon- setting	ding Se	etting ra	inge: 0.00 \sim 100.00)%	Default: 30.0%		
F3-25	Curve 1 Inflection point 2 Input volta	ige Se	etting ra	nge: 0.00~10.00\	/	Default: 6.00V		
F3-26	Curve 1 turning point 2 correspon- setting	ding Se	etting ra	nge: 0.00 \sim 100.00)%	Default: 60.0%		
F3-27	Curve 1 upper limit	Se	etting ra	nge: 0.00~10.00\	/	Default: 10.00V		
F3-28	Curve 1 upper limit correspone	ding Se	etting ra	inge: 0.00 \sim 100.00)%	Default: 100.0%z		
F3-29	Curve 2 lower limit	Se	etting ra	nge: 0.00~10.00\	/	Default: 0.00V		
F3-30	Curve 2 lower limit correspone	ding Se	etting ra	nge: 0.00 \sim 100.00)%	Default: 0.0%		
F3-31	Curve 2 Inflection point 1 Input volta	ige Se	etting ra	nge: 0.00~10.00\	/	Default: 3.00V		
F3-32	Curve 2 inflection point 1 correspon setting	ding Se	etting ra	nge: 0.00~100.00)%	Default: 30.0%		
F3-33	Curve 2 Inflection point 2 Input volta	ige Se	etting ra	nge: 0.00~10.00\	/	Default: 6.00V		
F3-34	-34 Curve 2 Inflection point 2 corresponding setting			nge: 0.00~100.00)%	Default: 60.0%		
F3-35	Curve 2 upper limit	Se	etting ra	nge: 0.00~10.00\	/	Default: 10.00V		
F3-36	Curve 2 upper limit corresponsetting	ding Se	etting ra	inge: 0.00~100.00)%	Default: 100.0%z		

Curve 1 and curve 2 can be set with two inflection points, which are divided into three straight lines, and the slope of each section can be different, which can achieve a more flexible correspondence, as shown in the

Schematic diagram of multi-point curve

If the curve 1 or curve 2 is selected by AS or AI (AS), the current must be converted into a voltage to set the current and voltage is doubled, 4mA corresponds to 2V, 20mA corresponds to 10V.

Note: [F3-21, F3-23, F3-25, F3-27] and [F3-29, F3-31, F3-33, F3-35] The voltage input value must be set in increments.					
F3-37 AO output signal type Setting range: 0000~0032 Default: 000					
Units: AO	1				
0: 0	\sim 10V				
1: 4.	00 \sim 20.00mA				
2: 0.00 \sim 20.00mA					
Ten: AO2					

 $0:0 \sim 10V$

1: 4.00 \sim 20.00mA

2: 0.00 \sim 20.00mA 3: FM frequency pulse output

Specify the output signal types of AO1 and AO2 terminals respectively, and choose voltage output and current

output; AO2 can also be used as pulse output.

Reminder: After selecting the output mode of the parameter, you also need to select the on-off mode of the control board switch J1, J2, J3.

1. When the frequency pulse output is selected, set the switch to J1;

2. When selecting 0.00 \sim 20.00mA or 4.00 \sim 20.00mA output, set the switch to J2;

3. When the 0 \sim 10V output is selected, set the switch to J3;

When the inverter leaves the factory, the software and hardware default to 0 \sim 10V output. If you need to change it, please change the hardware and software at the same time according to the actual output signal.

Transfer switch C	Choose location	Legend	Function Description
-------------------	-----------------	--------	----------------------

J1	0 \sim 50kHz frequency output
J2	0 \sim 20mA current output 4 \sim 20mA current output
J3	0 \sim 10V voltage output

F3-38	AO1 output selection		Default: 0
F3-39	A02 output selection	Setting range: $0 \sim 18$	Default: 1

It is used to set the inverter monitoring quantity corresponding to the output signals of the multi-function output terminals (AO1) and (AO2).

(AO1) The output signal is set by [F3-53] single digit.

(AO2) The output signal is set by [F3-53] tens place.

Set value	Monitoring volume	Function Description	AO minimum output	AO maximum output
0	Given frequency	Corresponds to the given frequency of the current	The minimum output corresponds to 0.00Hz	Maximum output corresponds to maximum frequency
1	Output frequency	Corresponds to the output frequency of the current inverter	The minimum output corresponds to 0.00Hz	Maximum output corresponds to maximum frequency
2	Output current	Corresponds to the output current of the current inverter	The minimum output corresponds to 0.00A	The maximum output corresponds to twice the rated current of the inverter
3	Input voltage	Corresponds to the input voltage of the current inverter	The minimum output corresponds to 0V	The maximum output corresponds to twice the rated voltage of the inverter
4	Output voltage	Corresponds to the current inverter output voltage	The minimum output corresponds to 0V	The maximum output corresponds to the rated voltage of the inverter
5	Mechanical speed	Corresponds to the mechanical speed corresponding to the output frequency of the current	The minimum output corresponds to 0 speed	Maximum output corresponds to the speed corresponding to the maximum frequency
6	Given torque	Corresponds to the output torque of the current inverter	The minimum output corresponds to 0.00% torque	Maximum output corresponds to 200% torque
7	Output torque	Corresponds to the output torque of the current inverter	The minimum output corresponds to 0.00% torque	Maximum output corresponds to 200% torque
8	PID given amount	Corresponds to the PID given amount of the current inverter	The minimum output corresponds to 0.00% PID reference	Maximum output corresponds to 100% of PID given amount

9	PID feedback	Corresponds to the PID feedback of the current inverter	The minimum output corresponds to 0.00% PID feedback	Maximum output corresponds to 100% PID feedback
10	Output Power	Corresponds to the output power of the current inverter	The minimum output corresponds to 0 power	Maximum output corresponds to rated output power
11	Bus voltage	Corresponds to the input voltage of the current inverter	The minimum output corresponds to 0V	The maximum output corresponds to twice the rated DC voltage of the inverter
12	Al1 input value	Corresponds to the current inverter's Al1 input value	The minimum output corresponds to the Al1 input lower limit	The maximum output corresponds to the upper limit of Al1 input
13	Al2 input value	Corresponds to the current inverter AI input value	The minimum output corresponds to the AI input lower limit	The maximum output corresponds to the upper limit of Al input
14	HDI input value	Corresponds to the current inverter's HDI input value	The minimum output corresponds to the HDI input lower limit	The maximum output corresponds to the upper limit of HDI input
15	Module temperature 1	Corresponds to the current inverter module temperature 1	The minimum output corresponds to the module temperature 1 is 0 degrees Celsius	Maximum output corresponding to module temperature 1 is 100 degrees Celsius
16	Module temperature 2	Corresponds to the current inverter module temperature 2	The minimum output corresponds to the module temperature 2 is 0 degrees Celsius	Maximum output corresponding to module temperature 2 is 100 degrees Celsius
17	RS485 given	AO1 address 0x3021 / 0x2021 AO2 address 0x3022 / 0x2022	The minimum output corresponds to 0	Maximum output corresponds to 1000

F3-40	AO1 output gain	Setting range: 25.0~200.0%	Default: 100.0%
F3-41	A01 output signal offset	Setting range: -10.0 \sim 10.0%	Default: 0.0%
F3-42	A01 output filter	Setting range: 0.000 \sim 6.000s	Default: 0.010s

AO1 output gain: used to adjust (AO1) terminal output analog value.

AO1 output signal offset: used to adjust the zero point of (AO1) terminal output signal.

A01 output filter: This parameter is defined as the size of the AO1 output analog signal, which is used to eliminate interference signals. The longer the filtering time, the stronger the anti-interference ability, but the response speed becomes slower; the shorter the filtering time, the anti-interference ability becomes weaker, but the response speed becomes faster.

F3-43	AO2 output gain	Setting range: 25.0~200.0%		Default: 100.0%		
F3-44	A02 Analog output signal offset	Setting range: -10.0~10.0%		Default: 0.0%		
F3-45	A02 output filter	Setting range: 0.000~6.000s		Default: 0.010s		
Please ref	Please refer to the relevant parameter description of AO1.					
F3-46	AO2FM frequency output lower limit		Setting range: 0.00~100.00kHz	Default: 0.20kHz		
F3-47	AO2FM frequency output upper limit		Setting range: 0.00~100.00kHz	Default: 50.00kHz		

Set the lower limit and upper limit frequency value of the output signal of AO2 when FM frequency pulse is output.

4.5 Keyboard and display parameters

F4-00 Parameter	and key lock selection	Setting range: 0 \sim 3	Default: 0
-----------------	------------------------	---------------------------	------------

0: not locked

The parameters and key lock function are invalid.

1: Function parameter lock

It is forbidden to modify the setting value of all function parameters (except F0-08, the value can be modified by up and down keys). The keyboard cannot enter the parameter modification interface, and the monitoring amount can be selected by shifting the keyboard. The functions of all keys on the keyboard are not locked.

2: Function parameters and key lock (except RUN / STOP / MF.K).

Lock the setting values of all function parameters. The keyboard cannot enter the parameter modification interface, and the keyboard monitoring amount cannot be selected. It is forbidden to modify the parameters. At the same time, lock all keys on the keyboard except RUN / STOP / MF.K.

3: The function parameters and keys are all locked

Lock the setting values of all function parameters, prohibit the modification of parameters; at the same time lock all keys on the keyboard except PRG.

Tips: 1: Unlock method of the dual-row digital tube keyboard: After pressing the "PRG" menu key, the

dual-row digital tube keyboard displays "CodE" on the first line of the digital tube. You can directly enter the user password (F4-01—user password) in the second line through the up and down keys and then press the "SET" key to unlock.

- 2: Unlock method of single-line digital tube keyboard: After pressing "PRG" menu key, the single-line digital tube keyboard displays "CodE". Then press the "SET" key to display the flashing input cursor, enter the user password (F4-01-user password) through the up and down keys, then press the "SET" key again to confirm, you can unlock.
- 3: The user password is a protective parameter set by the customer to protect the inverter parameters for random tampering. After the password is set, the password should be properly kept to prevent any inconvenience when the parameters need to be modified later.

F4-01	User password	Setting range: 0 \sim 9999	Default: 0
-------	---------------	------------------------------	------------

Used to set user password. When the parameter and key lock selection **[F4-00]** is locked (not "0"), the password must be entered before the lock can be released. The factory default password is 0, please keep the set password properly.

F4-02~F4	-06	Reserved	
F4-07	Keyboard MF.K selection	Setting range: $0{\sim}1$	Default: 0

Set optional function of MF.K button

0: reverse

1. JUg			
F4-08	Keyboard STOP key setting	Setting range: 0~2	Default: 1

0: The non-keyboard control mode is invalid. The keyboard stop key STOP cannot be used as the stop key to stop when the non-keyboard control running signal.

- 1: Non-keyboard control mode stops according to the stop mode. The keyboard stop key STOP can be used as the stop key to stop when the non-keyboard control running signal.
- 2: Non-keyboard control mode stops in free mode The keyboard stop key STOP can be used as a stop key to freely stop when the non-keyboard control running signal.

Note: If the terminal control or communication control mode is selected to be effective, then during terminal control or RS485 control, after pressing the keyboard stop key to stop, the inverter is in the stop locked state. At this time, if you want to make the inverter run again, you must first send the stop command through the selected run command channel, and then you can make the inverter run again after the locked state is released.

F4-09	Keyboard up and down key selection	Setting range: 0000 \sim 0212	Default: 0011			
	ED with a still and hand a stand down has an all first in sale thing					

LED unit position: keyboard up and down key modification selection

- 0: Invalid The keyboard up and down key shortcut modification parameter function is invalid.
- 1: Used to adjust the frequency given by keyboard F0-08 The up and down keys on the keyboard can quickly modify the setting value of parameter **[F0-08]**.
- 2: It is used to adjust the PID keyboard reference Fb-01. The up and down keys on the keyboard can quickly modify the setting value of parameter **[Fb-01]**.

Tens of LEDs: Power-off storage

0: frequency is not stored when power off

1: Frequency power-off storage

Select whether the inverter saves the modified value to the corresponding parameter when the power is cut off after the parameter is quickly modified through the keyboard up and down keys.

Hundreds of LEDs: action limit

- 0: Adjustable running stop
- 1: Adjustable only during operation, keep at shutdown
- 2: Adjustable during operation, cleared at shutdown

Thousands of LEDs: reserved

F4-10	Keyboard potentiometer lower limit	Setting range: 0.00 \sim 5.00V	Default: 0.50V
F4-11	Corresponding to the lower limit of keyboard potentiometer	Setting range: 0.00~100.00%	Default: 0.00%
F4-12	Upper limit value of keyboard potentiometer	Setting range: 0.00 \sim 5.00V	Default:.50V
F4-13	Corresponding to the upper limit of keyboard potentiometer	Setting range: 0.00~100.00%	Default: 100.00%

Keyboard potentiometer lower limit value: This function defines the signal lower limit value given by the keyboard potentiometer. If the voltage signal exceeds this value, the inverter will process the keyboard potentiometer lower limit value.

Keyboard potentiometer lower limit corresponding setting: used to set the percentage of the setting value corresponding to the keyboard potentiometer analog lower limit.

Upper limit value of keyboard potentiometer: This function defines the upper limit value of the signal given by the keyboard potentiometer. If the voltage signal exceeds this value, the inverter will process the upper limit value of the keyboard potentiometer.

Keyboard potentiometer upper limit corresponding setting: used to set the percentage of the setting value corresponding to the upper limit value of the analog value of the keyboard potentiometer.

F4-14	The content displayed in the running state of the first line of the keyboard	Setting range: 0000 \sim 6969	Default: 1101
F4-15	The content displayed in the running state of the first line of the keyboard	Setting range: 0000 \sim 6969	Default: 0402
F4-16	The content displayed in the first line of the keyboard when it is stopped	Setting range: 0000 \sim 6969	Default: 1100
F4-17	The content displayed in the first line of the keyboard when it is stopped	Setting range: 0000 \sim 6969	Default: 0402

The display content of the first line of the keyboard in the running state: set the content of the first line that can be cyclically monitored when the keyboard is in the running state. In the running state, the monitored content can be modified by the keyboard "SET" key. Each key press will jump one item. The cyclic monitoring parameter does not have the power-off memory function after being changed, and the value set by the LED digits is displayed by default after power-on.

The display content of the first line of the keyboard in the stop state: set the content of the first line that can be cyclically monitored when the keyboard is in the stop state. In the stop state, the monitored content can be modified by the keyboard "SET" key. Each key presses one item. The cyclic monitoring parameter does not have the power-off memory function after being changed. After power-on, the value set by the tenth digit of the LED is displayed by default. The setting content of the LED thousands and thousands digits is consistent with the C monitoring serial number.

F4-18	The content displayed on the second line of the keyboard	Setting range: 0000 \sim 6969	Default: 0402
F4-19	The content displayed on the second line of the keyboard	Setting range: 0000 \sim 6969	Default: 1210

F4-20	The second line of the keyboard displays the content in the stop state	Setting range: 0000 \sim 6969	Default: 0402
F4-21	The second line of the keyboard displays the content in the stop state	Setting range: 0000 \sim 6969	Default: 1210

It is valid only for the dual-line keyboard. For details, please refer to parameter [F4-14 \sim F4-17].

F4-22	Keyboard display item settings	Setting range: 0000 \sim 1111	Default: 0000
		-	

LED unit: output frequency display selection

0: Target frequency Shows the target frequency of the currently controlled motor.

1: Synchronous frequency Shows the output frequency of the inverter after calculation.

Tens of LEDs: reserved

Hundreds of LEDs: power display dimension Used to correct the output power of the inverter displayed by C-10, the unit of display power can be selected:

0: Power display percentage (%) shows that the output power is 100%, and 100.0% is the rated motor power

1: Power display kilowatt (KW) shows the actual value of output power

Thousands of LEDs: reserved

F4-23		Reserved	
F4-24	Speed display coefficient	Setting range: 0.0 \sim 500.0%	Default: 100.0%

This parameter sets the display coefficient of the keyboard monitoring item "mechanical speed". 100.0% corresponds to the rated motor speed.

	F4-25	Power display coefficient	Setting range: 0.0 \sim 500.0%	Default: 100.0%
--	-------	---------------------------	----------------------------------	-----------------

4.6 Motor parameters

F5-00	Motor type	Setting range: 0: asynchronous motor (AM)	Default: 0
-------	------------	---	------------

Motor type: read-only parameter indicating the current motor type. It is determined according to [F0-00] motor control method.

0: asynchronous motor (AM)

F5-01	Number of motor poles	Setting range: 2 \sim 48	Default: 4	
Set the number of motor poles, and set this parameter according to the value stated on the motor nameplate.				
F5-02	Motor rated power	Setting range: 0.4~1000.0kW	Default: model setting	

Set the rated motor power in 0.1kW units. Each time the motor power setting value changes, the inverter automatically calls the corresponding default value parameter as the default value of **[F5-03 ~ F5-11]**. If parameter self-learning is performed, the parameter values of **[F5-07 ~ F5-11]** will be automatically changed according to the result of self-learning. When high-precision motor control is required, be sure to set the motor parameters correctly **[F5-01 ~ F5-06]** After that, perform motor parameter self-learning.

F5-03	Motor rated frequency	Setting range: 0.01 ~ Maximum frequency	Default: model setting	
Set the roted frequency of the motor, and act this persmeter apporting to the roted frequency value recorded				

Set the rated frequency of the motor, and set this parameter according to the rated frequency value recorded on the motor nameplate.

F5-04	Motor rated speed	Setting range: 0 \sim 65000rpm	Default: model setting		
Set the rat	ed speed of the motor, and s	et this parameter according to the rate	d speed value recorded on the		
motor nameplate.					

Set the motor rated voltage, and set this parameter according to the rated voltage value stated on the motor nameplate.

F5-06	Motor rated current	Setting range: 0.1~2000.0A	Default: model setting

Set the rated current of the motor, and set this parameter according to the rated current value stated on the nameplate of the motor.

F5-07	Asynchronous motor no-load current	Setting range: 0.01~650.00A	Default: model setting
F5-08	Asynchronous motor stator resistance	Setting range: 0.01~50.00%	Default: model setting
F5-09	Rotor resistance of asynchronous motor	Setting range: 0.01~50.00%	Default: model setting
F5-10	Asynchronous motor stator leakage inductance	Setting range: 0.01~50.00%	Default: model setting
F5-11	Asynchronous motor stator inductance	Setting range: 0.1~2000.0%	Default: model setting

For asynchronous motor model parameters, when **[F5-20]** is set for auto-tuning, the contents of **[F5-07** \sim **F5-11]** will be changed automatically. If you know the exact motor model parameters, you can also enter the motor model parameters manually for debugging without performing parameter auto-tuning.

F5-12~F	-5-19	Reserved	
F5-20	Motor parameter identification	Setting range: 0~2	Default: 0

0: No operation No self-learning of motor parameters, motor parameters are set according to default values.

- 1: Rotation identification Before auto-tuning, be sure to enter the value of the nameplate parameter [F5-01 \sim F5-06] of the controlled asynchronous motor correctly. During the rotation timing, the asynchronous motor is in a static state. At this time, the stator resistance, rotor resistance of the asynchronous motor and the fixed rotor inductance of the motor are automatically measured. The corresponding parameters are automatically written into the function code, and are automatically refreshed after the rotation tuning is completed. After the parameters are set, press the keyboard run key to start the rotary self-learning. At this time, the keyboard displays "t-01". After the parameter auto-tuning is completed, the motor automatically stops and the inverter returns to the standby state.
- **2:** Static identification Before auto-tuning, be sure to enter the value of the nameplate parameter [F5-01 \sim F5-06] of the controlled asynchronous motor correctly. The motor is in a static state during static adjustment. At this time, the stator resistance, rotor resistance and stator rotor inductance of the asynchronous motor are automatically measured, and the measured parameters are automatically written into the function code accordingly. After the parameters are set, press the keyboard run key to start the static self-learning. At this time, the keyboard displays "t-02". After the parameter auto-tuning is complete, the running indicator goes out and the inverter returns to the standby state.

Note: After the parameter auto-tuning is finished, the setting value of [F5-20] will be automatically set to "0".

Attention: 1. Before setting [F5-20] to "1" for rotary type self-learning, the motor shaft should be disconnected from the load, and the motor is prohibited to carry out rotation parameter self-learning with load.

2. In some occasions (such as when the motor cannot be separated from the load), it is not convenient to perform rotary self-learning or the user does not have high requirements for motor control performance. If you do not perform self-learning, be sure to enter the motor nameplate parameters [F5-01 \sim F5-06] correctly.

3. If the user already knows the accurate motor parameters, he can directly input the motor

parameters to [F5-01 \sim F5-11].

4. Before starting self-learning, make sure that the motor is in a stopped state, otherwise self-learning cannot be performed normally.

5. When [F5-20] is set to "1", if overvoltage or overcurrent faults occur during self-learning, the acceleration / deceleration time [F0-14, F0-15] can be extended appropriately.

6. If the inverter's static self-learning is unsuccessful, report E.tE1 fault; if the inverter's rotary self-learning is unsuccessful, report E.tE2 fault.

F5-21~F	5-29	Reserved	
F5-30	Speed feedback or encoder type	Setting range: 0000 \sim 1111	Default: 0000

Units of LED: Encoder type Set the encoder type according to the actual encoder settings.

0: ordinary ABZ encoder

1: resolver

Tens of LED: Encoder direction When it is found that the motor speed and the encoder speed measurement direction are inconsistent, exchange the direction by setting this parameter.

0: consistent direction;

1: The direction is opposite

Hundreds of LEDs: wire break detection After the wire break detection is turned on, the inverter will report an encoder failure and stop when it detects that the encoder is broken.

0: close

1: open

Thousands of LEDs: Z pulse correction enabled

0: close

1: open

F5-31ABZ encoder line numberSetting range: 0~60000Default: 1024	F5-31	ABZ encoder line number	Setting range: 0~60000	Default: 1024
---	-------	-------------------------	------------------------	---------------

ABZ encoder line number: used to set the number of pulses output by the speed feedback sensor per week, please set accurately according to the sensor specifications.

F5-32	Disconnection detection time	Setting range: 0.100 \sim 60.000s	Default: 2.000s
-------	------------------------------	-------------------------------------	-----------------

Disconnection detection time: It is used to set the delay time to confirm the sensor disconnection when the sensor disconnection detection is valid. Set 0sec to disable the disconnection detection function;

F5-33	Resolver pole number	Setting range: 2~128	Default: 2
-------	----------------------	----------------------	------------

Resolver pole number: The number of poles is set according to the resolver actually selected, which is generally a 2-pole resolver.

F5-34 \sim	F5-35	Reserved	
F5-36	Encoder speed filter	Setting range: 0.0~100.0ms	Default: 1.0ms

If the feedback interference of the motor encoder is large, the filtering time of the speed measurement can be appropriately increased, but the increase of the filtering time will reduce the response performance of the system. In some occasions with higher requirements for response performance, too large filtering time will cause system oscillation.

4.7 Vector control parameters

F6-00	Speed loop proportional gain 1	Setting range: 0.01~100.00	Default: 10.00
F6-01	Speed loop integration time 1	Setting range: 0.000 \sim 6.000	Default: 0.500
F6-02	Speed loop filter time 1	Setting range: 0.0 \sim 100.0ms	Default: 0.0ms
F6-03	Speed loop switching frequency 1	Setting range: 0.00 \sim 50.00Hz	Default: 5.00Hz
F6-04	Speed loop proportional gain 2	Setting range: 0.01~100.00	Default: 10.00
F6-05	Speed loop integration time 2	Setting range: 0.000 \sim 6.000s	Default: 0.500s
F6-06	Speed loop filter time 2	Setting range: 0.0~100.0ms	Default: 0.0ms
F6-07	Speed loop switching frequency 2	Setting range: 0.00 \sim 50.00Hz	Default: 5.00Hz

Speed loop proportional gain and integration time setting: Increasing the proportional gain can speed up the dynamic response of the system; but the proportional gain is too large, the system is prone to oscillation. Reducing the integration time can speed up the dynamic response of the system; but if the integration time is too small, the system overshoot is large and it is easy to produce oscillations. Generally, adjust the proportional gain first to ensure that the system does not oscillate as much as possible; then adjust the integration time so that the system has both fast response characteristics and little overshoot.

Note: If the proportional gain is too large and the integration time is too small, the system may generate an overvoltage fault (if there is no external braking resistor or braking unit) after it is quickly started to high speed. This is due to the decrease process after speed overshoot. The system regenerative braking state energy feedback. It can be avoided by reducing the proportional gain and increasing the integration time parameter.

ASR (speed loop) adjustment of proportional gain and integration time parameters in high and low speed operation: if the system has fast response requirements for high and low speed on-load operation, ASR switching frequency can be set [F6-03] and **[F6 -07]**.

Generally, when the system is running at low frequency, to improve the dynamic response characteristics, the proportional gain can be relatively increased and the integration time can be reduced. Generally adjust the speed regulator parameters in the following order: select the appropriate switching frequency [F6-03] and [F6-07]. When the output frequency is below the switching frequency 1 [F6-04], the first group of ASR (speed loop) parameters are valid; when the output frequency is above the switching frequency 2 [F6-07], the second group of ASR (speed loop) parameters are valid; When the output frequency is between switching frequency 1 [F6-03] and switching frequency 2 [F6-07], the parameters are linearly and proportionally transitioned from the first set of ASR (speed loop) parameters to the second set of ASR (speed loop) parameters. Adjust ASR (speed loop) proportional gain 1 [F6-00] and ASR (speed loop) integration time 1 [F6-01] at low speed to ensure that there is no oscillation at low frequency and good dynamic response characteristics. Adjust the ASR (speed loop) proportional gain 2 [F6-04] and ASR (speed loop) integration time 2 [F6-05] at high speed to ensure that the system does not oscillate and the dynamic response characteristics are good.

F6-08	Electric torque limit	Setting range: 0.0~250.0%	Default: 180.0%
F6-09	Generation torque limit	Setting range: 0.0 \sim 250.0%	Default: 180.0%

Set the PI parameters of the current loop during vector control of asynchronous and synchronous machines. During vector control, if speed, current oscillation or instability occurs, the gains can be appropriately reduced to achieve stability; at the same time, increasing the gains can help improve the dynamic response of the motor.

F6-10	Current loop straight axis proportional gain	Setting range: 0.001~4.000	Default: 1.000
F6-11	Current loop integral gain	Setting range: 0.001~4.000	Default: 1.000
F6-12	Current loop cross axis proportional gain	Setting range: 0.001~4.000	Default: 1.000
F6-13	Current loop cross axis integral gain	Setting range: 0.001~4.000	Default: 1.000

Set the PI parameters of the current loop during vector control of asynchronous and synchronous machines. During vector control, if there are speed, current oscillation, and instability, each gain can be appropriately reduced to achieve stability; at the same time, increasing each gain helps to improve the dynamic response of the motor.

F6-15	Vector electric slip compensation	Setting range: 0.0 \sim 250.0%	Default: 100.0%
F6-16∼F	-6-21	Reserved	

The asynchronous motor vector control is effective. When the loop vector is open, the slip compensation coefficient is used to adjust the motor speed accuracy. When the motor speed is lower than the set value after loading, the value needs to be increased, and vice versa.

When the closed-loop vector is used, this value is used to adjust the linearity of the motor output torque and output current. When the motor has a rated load and the motor current deviates more than the rated value marked on the nameplate, the larger the value is, the smaller Increase the value.

F6-22	Over-excitation braking gain	Setting range: 0.0 \sim 500.0%	Default: 100.0%
F6-23	Over-excitation braking limit	Setting range: 0.0~250.0%	Default: 100.0%

The asynchronous motor closed-loop vector control is effective. The over-excitation function can achieve faster deceleration control without overvoltage. The greater the over-excitation gain, the faster the control response. The braking limit is relative to the rated excitation of the motor. The better the dynamic effect. However, an excessively large limit will increase the temperature rise of the motor during deceleration, and the value can only be increased appropriately when the motor has good heat dissipation.

F6-24	Vector control energy saving function	Setting range: 0~1	Default: 0
F6-25	Energy-saving control gain	Setting range: 0.0~80.0%	Default: 50.0%
F6-26	Energy-saving control low-pass filtering	Setting range: 0.000 \sim 6.000s	Default: 0.010s

The asynchronous machine vector control is effective. During energy-saving operation, the output current is automatically reduced by analyzing the torque output to reduce the motor's heat loss to achieve the energy-saving effect.

Under vector control, the motor output power is controlled. When the motor is running at low and medium speeds, it is in the constant torque zone. At this time, the motor torque output is limited by electric / generator torque [F6-08 \sim F6-09], and the rated speed is above During operation, it is in the constant power zone. At this time, the output power is limited to [F6-27], and the motor torque output decreases in inverse proportion to the speed.

4.8 Torque control parameters

	F7-00	Torque / speed control	Setting range: 0 \sim 1	Default: 0
--	-------	------------------------	---------------------------	------------

0: speed control

1: Torque control This option is only effective under vector control.

F7-01	Torque reference channel selection	Setting range: 0 \sim 5	Default: 0
-------	------------------------------------	---------------------------	------------

The torque setting adopts a relative value, and 100.0% corresponds to the rated torque of the motor. The setting range is 0% to 200.0%, indicating that the maximum torque of the inverter is 2 times the rated torque of the inverter.

0: keyboard number given It is given by the function code [F7-02].

1: keyboard potentiometer given Set by analog value of keyboard potentiometer.

2: Al1 Set by Al1 terminal voltage analog input.

3: Al2 It is set by the Al2 terminal voltage or current analog input. The voltage or current input can be selected by the switch on the control board.

4: HDI High-speed pulse input by HDI terminal.

5: RS485 communication given Set by RS485 serial communication, the communication address is 0x3005 / 0x2005.

F7-02	Torque keyboard digital setting	Setting range: 0 \sim 100.0%	Default: 0.0%
-------	---------------------------------	--------------------------------	---------------

When the function code [F7-01] = 0, the torque setting value is given by the function code [F7-02].

F7-03	Torque input lower limit	Setting range: 0.00 \sim 100.00%	Default: 0.00%
F7-04	Lower limit corresponding setting	Setting range: -200.00 \sim 200.00%	Default: 0.00%
F7-05	Torque input upper limit	Setting range: 0.00~100.00%	Default: 100.00%
F7-06	Upper limit corresponding setting	Setting range: -200.00 \sim 200.00%	Default: 100.00%
F7-07	Reference torque filter time	Setting range: 0.000 \sim 6.000s	Default: 0.100s

Use [F7-03 \sim F7-06] to linearize the torque reference channel to obtain the torque reference value. Given first-order filter time: Filter the torque given value to make the given torque change smoothly.

F7-08	Output torque upper limit	Setting range: 0 \sim 200.0%	Default: 150.0%
F7-09	Output torque lower limit	Setting range: 0 \sim 200.0%	Default: 0%

Output torque upper limit: used to set the output torque upper limit during torque control;

Output torque lower limit: used to set the output torque lower limit during torque control;

F7-10	Torque control forward speed limit selection	Setting range: 0 \sim 5	Default: 0

It is used to set the maximum running frequency limit of the inverter in torque control mode.

When the inverter torque control, if the load torque is less than the output torque of the motor, the motor speed will continue to rise, in order to prevent accidents such as speeding of the mechanical system, the maximum motor speed during torque control must be limited.

0: keyboard number given It is given by function code [F7-12].

1: Keyboard potentiometer setting × F7-12 Set by analog value of keyboard potentiometer.

2: Al1 × F7-12 Set by Al1 terminal voltage analog input.

3: AI2 ×F7-12 It is set by the AI2 terminal voltage or current analog input. The voltage or current input can be selected by the switch on the control board.

4: HDI × F7-12 High-speed pulse input by HDI terminal.

5: RS485 communication setting × F7-12 Set by RS485 serial communication, the communication

address is 0x3006 / 0x2006.

Note: setting 100% corresponds to the maximum output frequency

F7-11	Torque control reverse speed limit selection	Setting range: 0 \sim 5	Default: 0
-------	--	---------------------------	------------

0: keyboard number given It is given by function code [F7-13].

1: Keyboard potentiometer setting × F7-13 Set by analog value of keyboard potentiometer.

2: Al1 × F7-13 Set by Al1 terminal voltage analog input.

3: AI2 ×F7-13 It is set by the AI2 terminal voltage or current analog input. The voltage or current input can be selected by the switch on the control board.

4: HDI × F7-13 High-speed pulse input by HDI terminal.

5: RS485 communication setting × F7-13 Set by RS485 serial communication, the communication address is 0x3007 / 0x2007.

Note: setting 100% corresponds to the maximum output frequency

F7-12	Torque control forward rotation maximum speed digital limit	Setting range: 0.0 \sim 100.0%	Default: 100.0%
F7-13	Torque control reverse maximum speed digital limit	Setting range: 0.0 \sim 100.0%	Default: 100.0%

When the function codes **[F7-10]** and **[F7-11]** are set to 0, the maximum speed limit will be set by **[F7-12]** and **[F7-13]**. In order to prevent the initial commissioning of the torque function, a default speed setting of 100.0% appears to be less, enabling protection

4.9 V / F control parameters

F8-00	Linear V / F curve selection	Setting range:: 0~11	Default: 0
-------	------------------------------	----------------------	------------

V / F curve selection It is used to select the type of V / F curve to meet the requirements of different load characteristics.

0: straight line VF curve;

1-9: 1.1 to 1.9 power VF decreasing torque curves, as shown in the figure below;

10: square VF curve;

11: Multi-point VF curve; refer to [F8-01 \sim F8-10];

The default straight VF curve is suitable for most general occasions; the multiple power curve and the square VF curve are generally used for fans or pumps, which can reduce high-frequency current and achieve energy-saving effects.

F8-01	V / F voltage V1	Setting range: 0.0~100.0%	Default: 3.0%
F8-02	V / F frequency F1	Setting range: 0.00 \sim Maximum frequency	Default: 1.00Hz
F8-03	V / F voltage V2	Setting range: 0.0~100.0%	Default: 28.0%
F8-04	V / F frequency F2	Setting range: 0.00 \sim Maximum frequency	Default: 10.00Hz
F8-05	V / F voltage V3	Setting range: 0.0~100.0%	Default: 55.0%
F8-06	V / F frequency F3	Setting range: 0.00 \sim Maximum frequency	Default: 25.00Hz
F8-07	V / F voltage V4	Setting range: 0.0~100.0%	Default: 78.0%
F8-08	V / F frequency F4	Setting range: 0.00 \sim Maximum frequency	Default: 37.50Hz
F8-09	V / F voltage V5	Setting range: 0.0~100.0%	Default: 100.0%
F8-10	V / F frequency F5	Setting range: 0.00 \sim Maximum frequency	Default: 50.00Hz

Self-setting V / F curve:

The user sets the first / second / three / fourth / fifth voltage percentages of the V / F curve based on the inverter 's rated output voltage of 100.0%, corresponding to the frequency points of F1 / F2 / F3 / F4 / F5; The user sets the first, second, third, fourth, and fifth frequency values of the V / F curve, which correspond to V1 / V2 / V3 / V4 / V5, respectively. This group of parameter settings must meet the following conditions: $0 \le F1 \le F2 \le F3 \le F4 \le F5 \le maximum$ frequency; $0 \le V1 \le V2 \le V3 \le V4 \le V5 \le 100.0\%$ V1, V2, V3, V4, V5 are based on the rated motor voltage.

F8-11	Output voltage percentage	Setting range: 25~120%	Default: 100%
-------	---------------------------	------------------------	---------------

The output voltage adjustment factor of the inverter. This function is used to adjust the output voltage of the inverter to meet the needs of different V / F characteristics.

F8-12	torque boos		Setting range: 0.0~30.0%	Default: 0.0%
F8-13	Torque boost frequency	cutoff	Setting range: 0.0~100.0%	Default: 100.0%

Torque boost: [F8-12] is set to 0.0 for automatic torque boost, and the output voltage is automatically compensated according to the size of the load; [F8-12] is set to other values for fixed torque boost, and the output voltage is compensated according to the output frequency To improve the low-frequency torque characteristics of the inverter. Please select the torque boost value according to the size of the load. During low-frequency operation, the torque boost value is too high, the motor may be overexcited,

and it is easy to overheat for a long time. In severe cases, the inverter may have overcurrent fault protection, or the inverter may not start .

Note: When the parameter [F8-00] is set to "1" to customize the V / F curve, the torque boost value set by the parameter [F8-12] is invalid, and the inverter runs according to the customized V / F curve.

Torque boost cutoff frequency: Set the effective range of the torque boost function. When the output

frequency exceeds this value, the torque boost function is cut off. 100.0% corresponds to the rated frequency of the motor.

F8-14	V / F slip compensation gain	Setting range: 0.0~200.0%	Default: 100.0%
F8-15	V / F slip compensation limit	Setting range: 0.0 \sim 300.0%	Default: 100.0%
F8-16	V / F slip compensation filter	Setting range: 0.000 \sim 6.000s	Default: 0.200s

This function enables the output frequency of the inverter to be automatically adjusted within the set range with the change of the motor load; to dynamically compensate the slip frequency of the motor, so that the motor basically maintains a constant speed, effectively reducing the impact of load changes on the motor speed.

If it is used together with the automatic torque boost function, the low-frequency torque characteristics of the inverter can be significantly improved. 100.0% of the slip frequency compensation amount corresponds to the rated slip of the motor. Setting the compensation value too large may cause the motor speed to exceed the set value, so **[F8-15]** is required to set the limit. The slip compensation filtering time is the size of the slip compensation filtering, which is used to eliminate interference signals. The longer the filtering time, the stronger the anti-interference ability, but the response speed becomes slower; the shorter the filtering time, the anti-interference ability becomes weaker, but the response speed becomes faster.

F8-17 Oscillation suppression gain Setting range: 0.0~900.0% Default: 100.0%
--

When the motor control mode F0-00 = 0 or 1, medium and high power occasions are prone to motor current instability and motor speed oscillation. This is a low-frequency resonance caused by the combination of electrical and mechanical effects. By adjusting **[F8-17]**, low-frequency resonance can be suppressed, but excessive suppression gain may cause additional stability problems.

F8-18		Resereved	
F8-19	V / F automatic energy-saving control	Setting range: 0 \sim 1	Default: 0
F8-20	Lower frequency limit of energy-saving buck frequency	Setting range: 0.0 \sim 50.00Hz	Default: 15.00Hz
F8-21	Lower limit of energy-saving buck voltage	Setting range: $0.0 \sim 100.0\%$	Default: 50.0%
F8-22	Energy-saving buck voltage regulation rate	Setting range: 0 \sim 0.200V/MS	Default: 0.010V/MS
F8-23	Energy saving buck voltage recovery rate	Setting range: 0~2.000V/MS	Default: 0.200V/MS

Automatic energy-saving control: when the motor is under light load, the inverter automatically adjusts the output voltage after entering the constant speed, improving the efficiency of the motor to achieve the purpose of energy saving.

0: close

1: open

Energy saving step-down frequency lower limit: When the output frequency of the inverter is lower than this value, the automatic energy saving control will be invalid.

Energy saving step-down voltage lower limit: the lower limit of output voltage that can be reduced during automatic energy-saving operation. 100.0% is the output voltage corresponding to the current output frequency without energy-saving control.

Energy-saving buck voltage regulation rate: The rate of voltage regulation during the energy-saving buck process.

Energy saving buck voltage recovery rate: the rate at which the voltage rises back to normal voltage when the energy saving buck process is exited.

Note: The automatic energy saving is entered only at a constant speed, so this function is not suitable for the occasion where the given frequency changes frequently.

F8-24~F	8-29	Resereved	
F8-30	Voltage-frequency separated output voltage source	Setting range: 0~6	Default: 0

When **[F0-01]** = 3 (voltage-frequency separation output mode), the function code sets the source of the output voltage command; in voltage-frequency separation output mode, the output voltage command 100.0% corresponds to the rated motor voltage **[F5-05]**, output The frequency command is still specified by the channel A and B frequency sources, see **[F0-03]**, **[F0-04]**, **[F0-06]**.

0: Function code F8-31 setting

1: keyboard potentiometer given Given by keyboard potentiometer

2: Voltage analog Al1 is given Set by Al1 terminal voltage analog input.

3: Voltage / current analog Al2 given It is set by the Al2 terminal voltage or current analog input. The voltage or current input can be selected by the switch on the control board.

4: Terminal pulse HDI setting The high-speed pulse input by the HDI terminal is set, and the corresponding range is from 1K to 50K, and the corresponding voltage is 0 to the rated voltage of the inverter.

5: PID output given Set by PID output

6: RS485 communication given Set by RS485 serial communication, the communication address is 0x300A / 0x200A.

F8-31	Digital setting of voltage-frequency	Setting range: $0.0\% \sim 100.0\%$	Default: 0
	separation output voltage	Setting range. 0.0% ~ 100.0%	Delault. 0

Digital setting of voltage-frequency separation voltage: When [F8-30] = 0, this parameter determines the

reference of the voltage source, and 100% corresponds to the rated voltage of the motor.

F8-32	Voltage-frequency separation voltage acceleration time	Setting range: 0.00~100.00s	Default: 10.00
F8-33	Voltage-frequency separation voltage deceleration time	Setting range: 0.00~100.00s	Default: 10.00

Voltage-frequency separation voltage acceleration time: refers to the time required for the output voltage to accelerate from 0 to the rated voltage of the motor.

Voltage-frequency separation voltage deceleration time: refers to the time required for the output voltage to decelerate from the rated voltage to 0.

Schematic diagram of voltage-frequency separation

F8-34 Voltage-freque	ncy separation stop mode	Setting range: 0~1	Default: 0
----------------------	--------------------------	--------------------	------------

The function code sets the stop mode of the voltage-frequency separation mode:

0: The output voltage and output frequency acceleration and deceleration do not affect each other

1: After the output voltage drops to 0V, the output frequency drops again.

Note: 1. When switching between forward and reverse rotation, [F8-34] selection control is invalid, the output voltage decelerates to zero first, then the output frequency decelerates to zero, and then the direction is switched.

2. When [F8-34] = 0, the frequency and voltage are decelerated at the same time, but the shutdown is based on the frequency setting time. When the voltage deceleration time is greater than the frequency, the greater time is invalid.

4.10	Enhanced	function	parameter	group

F9-00	Jump frequency 1	0.00~Maximum frequency	Default: 0.00Hz
F9-01	Jump frequency amplitude 1	0.00~Maximum frequency	Default: 0.00Hz
F9-02	Jump frequency 2	0.00~Maximum frequency	Default: 0.00Hz
F9-03	Jump frequency amplitude 2	0.00~Maximum frequency	Default: 0.00Hz
F9-04~F	F9-04~F9-07 Reserved		

F9-08	Swing frequency control	Setting range: 0~1	Default: 0
F9-09	Swing frequency amplitude control	Setting range: 0~1	Default: 0
F9-10	Reserved		
F9-11	Swing frequency amplitude	Setting range: 0.0~100.0%	Default: 10.0%
F9-12	Jump frequency amplitude	Setting range: 0.0~50.0%	Default: 10.0%
F9-13	Swing frequency rise time	Setting range: 0.00 \sim 650.00s	Default: 5.00s
F9-14	Wobble frequency fall time	Setting range: 0.00 \sim 650.00s	Default: 5.00s

During wobble frequency operation, the inverter periodically changes the output frequency with the preset acceleration and deceleration time. This function is especially suitable for the textile industry and other systems that allow the speed to change according to the different diameters of the bobbin.

The center frequency of the wobble frequency comes from the frequency set by the main and auxiliary channels given by the frequency, multi-stage speed or program control (PLC); the wobble frequency is automatically canceled during jog and closed-loop operation. When the PLC and the wobble frequency are running at the same time, the wobble frequency function is invalid when switching between the PLC frequency segments. After the PLC stage acceleration and deceleration settings transition to the PLC set frequency, the wobble frequency starts.

When using the swing frequency function ([F9-08] is valid), the inverter first accelerates to the center frequency of the swing frequency according to the acceleration time, and then presses the set swing frequency amplitude [F9-11], jump frequency [F9- 12]. Wobble frequency rise time [F9-13] and wobble frequency fall time [F9-14] The wobble frequency runs cyclically until it is decelerated and stopped according to the deceleration time after a stop command.

Swing frequency control

This parameter defines whether to use the wobble frequency function.

- 0: Swing frequency control is invalid
- 1: Swing frequency control is effective

Swing control

0: The swing amplitude changes relative to the center frequency. The swing amplitude AW changes with the center frequency. For the change rate, see **[F9-11]**.

1: Relative maximum frequency The swing amplitude is fixed. The swing amplitude AW is determined by the maximum frequency and **[F9-11]**.

Swing frequency amplitude: This parameter defines the amplitude of the frequency swing during swing frequency control.

Variable swing: AW = center frequency × [F9-11]

Fixed swing: AW = maximum operating frequency [F0-09] × [F9-11]

Jump frequency amplitude: used to set the jump frequency during wobble frequency operation.

Sudden jump frequency = swing amplitude AW × [F9-12]

Swing frequency rise time: used to set the acceleration time of swing frequency.

Swing frequency falling time: used to set the deceleration time of swing frequency.

F9-15	Fan control	0~2	Default: 1
-------	-------------	-----	------------

0: The fan runs after the inverter is powered on

1: Shutdown is related to temperature, running is running

2: The stop fan stops, the operation is related to the temperature

F9-16	Energy consumption braking enable	0 ~1	Default: 0
F9-17	Energy consumption braking action voltage	115.0%~150.0%	Default: 135.0%
F9-18	Energy consumption braking utilization rate	0.0~100.0%	Default: 10.0 %
F9-19~F9-20		Reserved	

4.11 Fault and protection parameters

FA-00	Overcurrent suppression function	Setting range: 0 \sim 1	Default: 0
FA-01	Overcurrent suppression point	Setting range: 0.0 \sim 300.0%	Default: 160.0%
FA-02	Overcurrent suppression gain	Setting range: 0.0 \sim 500.0%	Default: 100.0%

Overcurrent suppression function The over-current suppression function is to limit the over-current suppression point automatically during real-time monitoring of the load current during operation to prevent fault trip caused by excessive current. This function is especially suitable.

0: suppression is always effective;

1: Acceleration and deceleration are valid, constant speed is invalid;

Overcurrent suppression point The set current limit level (the inverter controls the output current by stopping acceleration, decelerating or decreasing, and increasing the output frequency).

Overcurrent suppression gain This parameter can be used to adjust the response speed of overcurrent suppression.

Note: The use of this function may prolong the acceleration and deceleration time. When the inverter starts and stops, if the output frequency cannot run to the given frequency under the expected acceleration and deceleration time under the condition of large current, it indicates that the current limiting function is activated. Please reduce the load or adjust the relevant parameters.

FA-03	Current hardware protection settings	Setting range: 0000~0201	Default: 0001
-------	--------------------------------------	--------------------------	---------------

Units of LED: Wave-by-wave current limiting The wave-by-wave current limiting is protected by hardware, which can limit the rise of current to a certain extent, so that the current does not exceed the protection value of the inverter, and avoid stopping due to skipped current faults.

0: close

1: open

Tens of LEDs: reserved

Hundreds of LEDs: SC protection interference suppression When this function is valid, the inverter will

intelligently judge the E. SC alarm, eliminate interference, and only alarm the real fault signal. This function may delay the alarm time, please use it with caution.

0: close

- 1: First-level interference suppression
- 2: Secondary interference suppression

FA-04~I	FA-05	Reserved	
FA-06	Busbar overvoltage suppression function	Setting range: 0000 \sim 0012	Default: 0012

ED one bit: Overvoltage suppression control

0: prohibited

- 1: Only enabled during deceleration
- 2: Enable both under acceleration and deceleration

Select whether the voltage suppression function is effective when the inverter decelerates. If this function is valid, when the bus voltage of the inverter reaches or exceeds the value set by [FA-07] during deceleration, the inverter will slow down or stop deceleration, so as to ensure that the inverter does not skip the voltage due to the high bus voltage protection.

Select whether the voltage suppression function is effective when the inverter accelerates. When the accelerating bus voltage of the inverter reaches or exceeds the value set by [FA-07], the inverter will automatically adjust the operating frequency to suppress the rise of the bus voltage, so as to ensure that the inverter does not cause overvoltage protection due to excessive bus voltage. This function is especially effective for eccentric loads.

Tens of LEDs: Excitation control

0: close

1: open

Hundreds of LEDs: reserved Thousands of LEDs: reserved

FA-07	Bus overvoltage suppression point	Setting range: 110.0 \sim 150.0%	Default: 130.0%
FA-08	Bus overvoltage suppression gain	Setting range: 0.0 \sim 500.0%	Default: 100.0%

When the bus voltage reaches or exceeds the bus overvoltage suppression point **[FA-07]** during the operation of the inverter, the inverter will automatically adjust the operating frequency to suppress the bus voltage rise, so as to ensure that the inverter does not cause overvoltage protection due to the high bus voltage. Adjusting **[FA-08]** can improve the overvoltage suppression effect. Setting [FA-08] to 0 is equivalent to turning off the overvoltage suppression function. Overvoltage suppression is effective for any motor control method.

FA-09	Bus undervoltage suppression function	Setting range: 0 \sim 1	Default: 0
FA-10	Bus undervoltage suppression point	Setting range: 60.0% \sim 90.0%	Default: 80.0%
FA-11	Bus undervoltage suppression gain	Setting range: 0.0 \sim 500.0%	Default: 100.0%

When the bus voltage reaches or falls below the bus undervoltage suppression point **[FA-10]** during the operation of the inverter, the inverter will automatically adjust the operating frequency to suppress the reduction of the bus voltage, thus ensuring that the inverter does not cause undervoltage protection due to the low bus voltage. Adjusting **[FA-11]** can improve the undervoltage suppression effect. Setting **[FA-09]** to 0 is equivalent to turning off the overvoltage suppression function. Undervoltage suppression is effective for any motor control method.

· · · · · · · · · · · · · · · · · · ·	FA-12	Bus undervoltage protection point	Setting range: 60.0%~90.0%	Default: 60.0%
---------------------------------------	-------	-----------------------------------	----------------------------	----------------

Bus undervoltage protection point This parameter stipulates the allowable lower limit voltage of the bus voltage when the inverter is working normally. For some occasions where the power grid is low, the undervoltage protection level can be appropriately reduced to ensure the normal operation of the inverter.

Note: When the grid voltage is too low, the output torque of the motor will decrease. For constant power loads and constant torque loads, too low a grid voltage will increase the input and output current of the inverter, thereby reducing the reliability of the inverter operation.

FA-13		Reserved	
FA-14	Short circuit detection after power on	Setting range: 0 \sim 1	Default: 0

Power-on-to-ground short-circuit detection is to detect the insulation of the motor when the inverter is powered on. If the motor insulation is damaged and a short circuit to ground occurs, the inverter will detect and report a short circuit fault to ground.

0: close

1: open

Note: When this function is turned on, there is voltage output on the output terminals U, V and W of the inverter when power is turned on. Please pay attention to safety.

	FA-15	Phase loss protection	Setting	range: 0000~0021	Default: 0011
Units of LED: output phase loss protection		When the motor connected to the in-	verter loses phase, the		
output phase loss E.OLF will be reported.			ed.		
	0: clos	e			
	1: ope	n			
	Tens of L	EDs: Input phase loss pr	otection	When the power grid phase loss of	occurs, the inverter will
	report an ir	nput phase loss fault.			
	0. clos	e			

1: Turn on the alarm A.ILF

2: Turn on the fault E.ILF

Hundreds of LEDs: reserved Thousands of LEDs: reserved

FA-16 Motor overload protection factor Setting range: 0.0~250.0% Default: 100.0%
--

If the motor is overloaded for a long time, it will seriously heat up. **[FA-16]** sets the coefficient of overload protection or thermal protection of the inverter on the load motor. The motor overload protection and motor current have an inverse time limit characteristic curve, and the protection when FA-16 = 100.0% The curve is as follows.

- The current into the protection curve = (actual current of the motor / motor overload protection factor) × 100%, so increasing **[FA-16]** can improve the overload capacity of the motor; [FA-16] sets the motor overload warning coefficient when the motor overload reaches [FA-16] When the coefficient is set, the inverter warns via terminal output. For details, please refer to the Y terminal function.
- Note: When one inverter is running in parallel with multiple motors, the thermal relay protection function of the inverter will be ineffective. In order to effectively protect the motor, please install a thermal protection relay on the input end of each motor.

FA-17 Load warning detection setting Setting range: 0000~1414 Default: 0000					
LED unit: detection selection (protection 1)					
0: no (0: no detection				

- 1: Detect excessive load
- 2: Only detect excessive load at constant speed
- 3: Detect insufficient load
- 4: Only detect insufficient load at constant speed

Tens of LEDs: Alarm selection

- 0: alarm, continue to run
- 1: Fault protection action and free stop

Hundreds of LEDs: detection selection (protection 2)

- 0: no detection
- 1: Detect excessive load
- 2: Only detect excessive load at constant speed
- 3: Detect insufficient load
- 4: Only detect insufficient load at constant speed

Thousands of LEDs: alarm selection

- 0: alarm, continue to run
- 1: Fault protection action and free stop

FA-18	Load warning detection level 1	Setting range: 0.0~200.0%	Default: 130.0%
FA-19	Load warning detection time 1	Setting range: 0.0 \sim 60.0s	Default: 5.0s
FA-20	Load warning detection level 2	Setting range: 0.0~200.0%	Default: 30.0%
FA-21	Load warning detection time 2	Setting range: 0.0 \sim 60.0s	Default: 5.0s

In VF control mode, the motor output current is used as the load warning judgment value, 100.0% corresponds to the motor rated current; in vector control mode, the motor output torque is used as the load warning judgment value, 100.0% corresponds to the motor rated output torque, and the load warning judgment value The detection time FA-19 / FA-21 is compared with the detection threshold FA-18 / FA-20, and the corresponding action is made according to FA-17. The terminal output can be used for early warning.

FA-22		Reserved	
FA-23	Protective action of excessive speed deviation	Setting range: 0000~0012	Default: 0000

LED unit position: detection selection

- 0: no detection
- 1: Only detect at constant speed
- 2: Always check

Tens of LEDs: Alarm selection

- 0: Free stop and report fault E.DEF
- 1: Alarm A.DEF and continue to run

Hundreds of LEDs: reserved

Thousands of LEDs: reserved

FA-24	Excessive speed detection threshold	deviation	Setting range: 0.0 \sim 60.0%	Default: 10.0%
-------	-------------------------------------	-----------	---------------------------------	----------------

FA-25	Detection time for excessive speed deviation	Setting range: 0.0 \sim 60.0s	Default: 2.0s
-------	--	---------------------------------	---------------

Under vector control, when the deviation between the speed feedback value and the speed set value is greater than the detection threshold FA-24 within the detection time FA-25, the inverter considers that the detected deviation is too large and abnormal, and takes corresponding action according to FA-23. The speed deviation detection threshold 100% corresponds to the maximum frequency.

FA-26	Fast protection action	Setting range: 0000~0012	Default: 0000

LED unit position: detection selection

0: no detection

1: Only detect at constant speed

2: Always check

Tens of LEDs: Alarm selection

0: Free stop and report fault E.SPD

1: Alarm A.SPD and continue to run

Hundreds of LEDs: reserved

Thousands of LEDs: reserved

FA-27	Fast detection threshold	Setting range: 0.0~150.0%	Default: 110.0%
FA-28	Fast detection time	Setting range: 0.000 \sim 2.000s	Default: 0.010s

Under vector control, when the speed feedback value is greater than the detection threshold FA-27 within the detection time FA-28, the inverter considers that the motor speed is abnormally fast and makes corresponding actions according to FA-26. The detection threshold of the speed is 100% Corresponds to the maximum frequency.

FA-29~F2-36		Reserved	
FA-37	Fault self-recovery times	Setting range: 0 \sim 5	Default: 0
FA-38	Fault self-recovery interval time	Setting range: 0.1~100.0s	Default: 1.0s

Failure recovery times:

0: Off No automatic reset function, only manual reset.

1 \sim 5: Turn on the function, 1 \sim 5 is the number of self-recovery after failure (defined as the maximum number of self-recovery after each failure)

Due to load fluctuations, grid voltage fluctuations and other accidental factors during the operation of the inverter, the inverter may stop due to faults. At this time, in order to ensure the continuity of the system work, the inverter is allowed to automatically reset the fault types such as overload, overcurrent, system abnormality, overvoltage, and undervoltage during operation, and resume operation. In the process of self-recovery, the inverter resumes operation by speed tracking and restarting. If the inverter fails to resume operation within the set number of times, the fault is protected, the output is stopped, and the number of fault recovery counts is automatically cleared. Since multiple continuous fault restarts may cause damage to the inverter, it is recommended to set the number of fault self-recovery times to 1.

During fault self-recovery, the fault output terminal can be selected to operate or not to operate. For details, please refer to [F2-45 \sim F2-47].

Fault self-recovery interval time: This parameter is defined as the waiting time after the inverter fails and before each reset.

- Note: 1. This function is only effective for faults such as overload, overcurrent, system abnormality,
 - overvoltage, and undervoltage during operation, and is invalid for other faults;
 - 2. When the fault is not removed, the inverter cannot be reset.
- Tip: The starting characteristics of the mechanical equipment must be carefully considered in use. For occasions where it is impossible to start with load or when the inverter has no output when the inverter must output an alarm, please use this function carefully.

FA-39	Fault diagnosis information	See the fault information code table for details	
FA-40	Fault type	See the fault information code table for details	
FA-41	Fault operating frequency	0.00 \sim Maximum frequency	
FA-42	Fault output voltage	0~1500V	
FA-43	Fault output current	0.1~2000.0A	
FA-44	Fault bus voltage	0~3000V	
FA-45	Faulty module temperature	0∼100°C	
FA-46	Faulty inverter status	LED unit position: running direction 0: forward 1: reverse Tens of LEDs: running status 0: stop 1: Speed up 2: slow down 3: constant speed Hundreds of LEDs: reserved Thousands of LEDs: reserved	
FA-47	Fault input terminal status	See input terminal status diagram	
FA-48	Fault output terminal status	See output terminal status diagram	
FA-49	Previous failure type	See the fault information code table for details	
FA-50	Operating frequency of previous fault	0.00 \sim Maximum frequency	
FA-51	Previous fault output voltage	0~1500V	
FA-52	Previous fault output current	0.1~2000.0A	
FA-53	Bus voltage of previous fault	0~3000V	
FA-54	Module temperature of the previous failure	0∼100°C	
FA-55	Inverter status of previous failure	LED unit position: running direction 0: forward 1: reverse Tens of LEDs: running status 0: stop 1: Speed up 2: slow down 3: constant speed Hundreds of LEDs: reserved Thousands of LEDs: reserved	
FA-56	The state of the input terminal of the previous fault	See input terminal status diagram	
FA-57	Output terminal status of previous fault	See output terminal status diagram	
FA-58	The first two failure types	See the fault information code table for details	
FA-59	The first three failure types	See the fault information code table for details	

Tip: To record the detailed fault information of the inverter, the fault record can be cleared by

parameter [F0-19], see parameter [F0-19] for details.

4.12 Process PID control parameters

PID control is a commonly used method for process control. Adjust the output frequency of the inverter by performing a series operation of proportional, integral, and derivative on the difference between the feedback amount of the controlled object and the PID given amount of the inverter to form a negative feedback PID adjustment, so as to stabilize the controlled object at the PID Quantitative purpose.

Schematic diagram of PID control

Eb-00	PID	controller	given	signal	Setting range: $0 \sim 7$	Default: 0
1.0-00	source				Delddit: 0	

Set the input channel of PID controller given signal.

0: Keyboard digital PID setting PID setting value is determined by the setting value of [Fb-01].

1: Keyboard potentiometer setting PID setting value is given by keyboard potentiometer.

2: Analog AI1 given PID setpoint is given by voltage analog AI1.

3: Analog quantity Al2 setting PID setting value is given by voltage analog quantity Al2.

4: Terminal pulse HDI setting PID setting value is given by terminal pulse HDI.

5: RS485 communication given PID given value is given by RS485 communication, the communication address is 0x3008 / 0x2008.

6: The optional value of the optional card PID is given by the optional card. For details, please refer to the optional card manual.

7: Terminal selection The PID given value is selected by the combination of multi-function input terminals, and the multi-function input terminals are set by [F2-00 \sim F2-04].

Terminal switching selection diagram:

Terminal 3	Terminal 2	Terminal 1	PID given switching terminal selection	
OFF	OFF	OFF	Keyboard number PID given	
OFF	OFF	ON	Keyboard potentiometer given	
OFF	ON	OFF	Voltage analog Al1 given	
OFF	ON	ON	Voltage analog AI setting	
ON	OFF	OFF	Current analog AS is given	
ON	OFF	ON	Terminal pulse HDI given	
ON	ON	OFF	RS485 communication given	
ON	ON	ON	Optional card	

If you have doubts about the above table, please refer to the "FC" parameter group's multi-speed sequence diagram for multi-speed.

Pb-01 Reyboard digital FID given / leedback Setting range. 0.00**100.0% Deladit. 50.0%
--

This parameter is valid only when **[Fb-00] / [Fb-03]** is set to the keyboard digital PID reference / feedback; the maximum range of the feedback signal [Fb-06] is used as the reference; PID reference value will be

modified automatically and synchronously.

If the parameter **[F4-09]** LED unit digit is set to "3", you can quickly modify the value of this parameter through the keyboard up and down keys. After quickly modifying this parameter, whether the inverter saves the modified value during power outage 09] The setting value of the ten-digit LED is determined.

Fb-02	PID given acceleration and deceleration time	Setting range: 0.00 \sim 60.00	Default: 1.00s
· · · · · · · · · · · · · · · · · · ·			

PID given acceleration time Refers to the time required for the PID setting percentage to accelerate from 0% to the setting value of **[Fb-01]**;

PID given deceleration time Refers to the time required for the PID setting percentage to decelerate from **[Fb-01]** setting value to 0%;

	Fb-03	PID controller feedback signal source	Setting range: 0 \sim 7	Default: 2
--	-------	---------------------------------------	---------------------------	------------

Set the input channel of PID controller feedback signal.

0: Keyboard digital PID feedback The PID feedback channel is determined by the set value of [Fb-01].

1: Keyboard potentiometer feedback PID feedback channel is keyboard potentiometer.

2: Analog AI1 feedback PID feedback channel is voltage analog AI1.

3: Analog Al2 feedback PID feedback channel is voltage analog Al2.

4: Terminal pulse HDI feedback PID feedback channel is terminal pulse HDI.

5: RS485 communication feedback The PID feedback channel is RS485 communication, and the communication address is 0x3009 / 0x2009.

6: Optional card PID feedback channel is optional card, please refer to the optional card manual.

7: Terminal selection The PID feedback channel is selected by the combination of multi-function input terminals, and the multi-function input terminals are set by [F2-00 \sim F2-04].

Terminal switching selection diagram:

Terminal 3	Terminal 2	Terminal 1	PID given switching terminal selection	
OFF	OFF	OFF	Keyboard digital PID feedback	
OFF	OFF	ON	Keyboard potentiometer feedback	
OFF	ON	OFF	Voltage analog Al1 feedback	
OFF	ON	ON	Voltage / current analog AI feedback	
ON	OFF	OFF	Current analog AS feedback	
ON	OFF	ON	Terminal pulse HDI feedback	
ON	ON	OFF	RS485 communication feedback	
ON	ON	ON	Optional card	

If you have doubts about the above table, please refer to the "FC" parameter group's multi-speed sequence diagram for multi-speed.

Note: The given signal source of the PID controller and the feedback signal source of the PID controller cannot be set to the same channel, otherwise the PID cannot work normally.

Fb-04	Feedback signal low-pass filter time	Setting range: 0.000 \sim 6.000s	Default: 0.010s
Easthack signal low pass filter time constant			

Feedback signal low-pass filter time constant This parameter is defined as the size of filtering the feedback signal, which is used to eliminate the interference signal. The longer the filtering time, the stronger the anti-interference ability, but the response speed becomes slower; the shorter the filtering time, the anti-interference ability becomes weaker, but the response speed becomes faster.

Fb-05	Feedback signal gain	Setting range: 0.00~10.00	Default: 1.00		
This function	his function is used to amplify or reduce the input signal of the feedback channel.				

Fb-06	Maximum range of feedback signal	Setting range: 0~100.0	Default: 100.0	
This function is used to some at the display data of DID sizes are such and DID foodback are such				

This function is used to correct the display data of PID given amount and PID feedback amount.

Actual digital tube display value= The given (feedback) signal value-the input lower limit of this channel The upper limit of the channel input-the lower limit of the channel input Maximum sensor range

For example, when pressure control is set to the maximum pressure of the sensor, the displayed value is the actual pressure value.

Assuming that the external voltage terminal (AI1) is used as the feedback signal input channel, when the (AI1) upper limit voltage is set to 9V and the lower limit voltage is 0.5V; the current feedback voltage value is 4.5V, and the maximum sensor range is 20mpa.

Digital tube display value = (4.5-0.5) × 20 / (9-0.5) = 9.4mpa

	Fb-07	PID control selection	Setting range: 0000 \sim 1111	Default: 0100
--	-------	-----------------------	---------------------------------	---------------

LED unit: feedback characteristic selection

- 0: Positive characteristic Applicable to the occasions where the output frequency of the inverter is required to maintain PID balance when the PID feedback amount is greater than the PID given amount; such as constant pressure water supply, air supply, and tension control for winding.
- 1: Negative characteristics Applicable to the occasions where the output frequency of the inverter is required to maintain PID balance when the PID feedback amount is greater than the PID given amount; such as central air conditioning constant temperature control and unwinding tension control.

Tens of LEDs: Closed-loop bypass keeps output

0: output is cleared when closed loop bypass

1: Output hold when closed loop bypass

Hundreds of LEDs: alignment selection

When the PID setting value is not at the 50% center point, the difference between the PID setting value and the PID feedback value, that is, the error range, is in an asymmetric state. This parameter selects whether to correct the asymmetric error range to return it to a symmetrical state.

0: Non-center alignment error is not corrected.

1: The center alignment error is corrected.

Thousands of LEDs: Differential adjustment properties

- 0: Differentiate the deviation
- 1: Differentiate the feedback

PID center alignment

Fb-08	PID preset output	Setting range: 0.00 \sim 100.0%	Default: 100.0%
Fb-09	PID preset output running time	Setting range: 0.0 \sim 6500.0s	Default: 0.0s

This function is defined as that after the PID operation is started, the output is first output according to

the PID preset [Fb-08], and continues to run on the output value for the time set by the PID preset

- output operation time [Fb-09], and then according to PID closed-loop characteristic operation.
- Tip: When PID is used for frequency source setting [F0-03 = 8] preset output 100.0% corresponds to the maximum frequency output; when PID is used for voltage-frequency separation output voltage source [F8-30 = 5] preset output 100.0% Corresponds to the rated voltage of the motor.

	Fb-10	PID control deviation limit	Setting range: 0.00 \sim 100.0%	Default: 0.0%
--	-------	-----------------------------	-----------------------------------	---------------

The maximum allowable deviation of PID feedback for a given amount of PID; when the feedback is within this range, PID adjustment stops and the output remains unchanged; the rational use of this function helps coordinate the accuracy and stability of the system output contradiction.

Fb-11	Proportional gain P1	Setting range: 0.000 \sim 8.000	Default: 0.100
Fb-12	Integration time I1	Setting range: 0.0~600.0s	Default: 1.0s
Fb-13	Differential gain D1	Setting range: 0.000 \sim 6.000s	Default: 0.000s

The adjustment parameters of PID control should be set according to the actual system characteristics.

- **Proportional gain P:** It is the parameter that determines the degree of response of P action to deviation. When the gain is large, the response is fast, but excessively large will produce oscillation; if the gain is small, the response is late.
- **Integration time I:** Determine the size of the I action effect. When the integration time is large, the response is slow, and the ability to control external disturbances becomes poor. When the integration time is small, the response speed is fast. If it is too small, oscillation will occur.
- **Differential gain D:** When the deviation between the PID feedback amount and the PID given amount changes, the output is adjusted in proportion to the deviation change rate. The adjustment amount is only related to the direction and magnitude of the deviation change, but not to the direction and magnitude of
the deviation itself. The function of differential regulation is to adjust the trend of the feedback signal when the feedback signal changes, thereby suppressing the change of the feedback signal. Use the differential regulator with caution, because the differential regulator is easy to amplify the interference of the system, especially the interference with higher change frequency.

Fb-14	Proportional gain P2	Setting range: 0.000 \sim 8.000	Default: 0.100
Fb-15	Integration time I2	Setting range: 0.0~600.0s	Default: 1.0s
Fb-16	Differential gain D2	Setting range: 0.000 \sim 6.000s	Default: 0.000s

Refer to [Fb-11 \sim F2-13] for this group of functions

Fb-17	PID parameter switching conditions	Setting range: 0~2	Default: 0
-------	------------------------------------	--------------------	------------

0: No switching, only use gain 1 parameter

1: Use X terminal to switch

2: Switch according to deviation

Fb-18	Low switching de	viation	Setting range: 0.0~100.0%	Default: 20.0%
Low switching deviation When the PID deviation is less than this value, use the gain			ain 1 parameter	

Fb-19	High switching d	leviation	Setting range: 0.0~100.0%	Default: 80.0%
High swite	ching deviation	When the	e PID deviation is greater than this value, the ga	ain 2 parameter is used

Fb-20		Reserved	
Fb-21	Differential limiting	Setting range: 0.0~100.0%	Default: 5.0%
Fb-22	PID output upper limit	Setting range: 0.0~100.0%	Default: 100.0%
Fb-23	PID output lower limit	Setting range: 0.0~Fb-22	Default: 0.0%
Fb-24	PID output filter time	Setting range: 0.000 \sim 6.000s	Default: 0.0s

PID output filter time This parameter is defined as the size of filtering the feedback signal, which is used to eliminate the interference signal. The longer the filtering time, the stronger the anti-interference ability, but the response speed becomes slower; the shorter the filtering time, the anti-interference ability becomes weaker, but the response speed becomes faster.

Fb-25	Feedback disconnection detection time	Setting range: 0.0~120.0s	Default: 1.0s
Fb-26	Feedback disconnection action selection	Setting range: 0~3	Default: 0
Fb-27	Upper limit of wire break alarm	Setting range: 0.0~100.0%	Default: 100.0%
Fb-28	Lower limit of wire break alarm	Setting range: 0.0~100.0%	Default: 0.0%

The feedback disconnection detection function is defined as when the frequency setting mode of the inverter is selected as the PID setting. When the inverter is running, when the feedback signal is detected to be greater than the set value of [Fb-27] or less than [Fb-28] set value and maintaining the delay time of [Fb-25], the sensor is considered to be disconnected.

Feedback disconnection action selection:

- **0: Continue PID operation without reporting failure** This function is invalid, and the inverter does not perform wire break detection.
- **1: Stop and report fault** When the inverter detects that the sensor is disconnected, it immediately blocks the output, the motor stops freely, and reports the fault E.PID.
- **2: Continue PID operation and output an alarm signal** When the inverter detects that the sensor is disconnected, it still operates according to PID adjustment, but the keyboard displays fault A.PID and flashes.
- 3: Run at the current frequency and output an alarm signal When the inverter detects that the sensor is disconnected, the output frequency before the fault remains unchanged, but the keyboard displays the

fault A.PID and flashes.

- Wire break alarm upper limit: Set the upper limit of PID sensor wire break detection. After the feedback signal exceeds the wire break alarm upper limit and continues for [Fb-25] delay time, the sensor is considered to be broken.
- Lower limit of wire break alarm: Set the lower limit of PID sensor wire break detection. After the feedback signal is less than the lower limit of wire break alarm and continues for [Fb-25] delay time, the sensor is considered to be broken.

Fb-29	Sleep selection	Setting range: 0 \sim 1	Default: 0
Fb-30	Sleep frequency	Setting range: 0.00 \sim 50.00Hz	Default: 30.00Hz
Fb-31	Sleep delay	Setting range: 0.0~3600.0S	Default: 3.0S
Fb-32	Wake deviation	Setting range: 0.0~50.0%	Default: 5.0%
Fb-33	Wakeup delay	Setting range: 0.0~60.0S	Default: 0.0S

4.13 Multi-speed, PLC function and swing frequency parameters

FC-00	Multi-band frequency 1	Setting range: 0.00 \sim maximum frequency	Default: 10.00 Hz
FC-01	Multi-band frequency 2	Setting range: 0.00 \sim maximum frequency	Default: 20.00 Hz
FC-02	Multi-band frequency 3	Setting range: 0.00 \sim maximum frequency	Default: 30.00 Hz
FC-03	Multi-band frequency 4	Setting range: 0.00~maximum frequency	Default: 40.00 Hz
FC-04	Multi-band frequency 5	Setting range: 0.00 \sim maximum frequency	Default: 50.00 Hz
FC-05	Multi-band frequency 6	Setting range: 0.00 \sim maximum frequency	Default: 40.00 Hz
FC-06	Multi-band frequency 7	Setting range: 0.00 \sim maximum frequency	Default: 30.00 Hz
FC-07	Multi-band frequency 8	Setting range: 0.00 \sim maximum frequency	Default: 20.00 Hz
FC-08	Multi-band frequency 9	Setting range: 0.00 \sim maximum frequency	Default: 10.00 Hz
FC-09	Multi-band frequency 10	Setting range: 0.00 \sim maximum frequency	Default: 20.00 Hz
FC-10	Multi-band frequency 11	Setting range: 0.00 \sim maximum frequency	Default: 30.00 Hz
FC-11	Multi-band frequency 12	Setting range: 0.00 \sim maximum frequency	Default: 40.00 Hz
FC-12	Multi-band frequency 13	Setting range: 0.00 \sim maximum frequency	Default: 50.00 Hz
FC-13	Multi-band frequency 14	Setting range: 0.00~maximum frequency	Default: 40.00 Hz
FC-14	Multi-band frequency 15	Setting range: 0.00 \sim maximum frequency	Default: 30.00 Hz

This group of parameters is used to set the running frequency of the fifteen-stage speed in program operation and multi-stage speed control.

Multi-step speed control has the priority after jog. When the user selects multi-speed operation, 4 multi-function input terminals need to be set as multi-speed control terminals. For the specific setting method, please refer to the detailed description of [F2-00 \sim F2-04].

These four multi-speed control terminals are combined with the (COM) ON / OFF state to control which speed the inverter runs at. Its operation and direction are controlled by the operation signal and direction given by the operation command channel [F0-02]. The acceleration and deceleration time defaults to acceleration and deceleration time 1 [F0-14], [F0-15], and can also be selected through the acceleration and deceleration time selection terminals set by the multi-function input terminals [F2-00 \sim F2-04] Select acceleration and deceleration time.

Multi-speed terminal 4	Multi-speed terminal 3	Multi-speed terminal 2	Multi-speed terminal 1	Terminal Period of speed
OFF	OFF	OFF	ON	1X [FC-00]
OFF	OFF	ON	OFF	2X [FC-01]

OFF	OFF	ON	ON	3X [FC-02]
OFF	ON	OFF	OFF	4X [FC-03]
OFF	ON	OFF	ON	5X [FC-04]
OFF	ON	ON	OFF	6X [FC-05]
OFF	ON	ON	ON	7X [FC-06]
ON	OFF	OFF	OFF	8X [FC-07]
ON	OFF	OFF	ON	9X [FC-08]
ON	OFF	ON	OFF	10X [FC-09]
ON	OFF	ON	ON	11X [FC-10]
ON	ON	OFF	OFF	12X [FC-11]
ON	ON	OFF	ON	13X [FC-12]
ON	ON	ON	OFF	14X [FC-13]
ON	ON	ON	ON	15X [FC-14]

 FC-15
 Multi-frequency operation mode selection
 Setting range: 0000~2122
 Default: 0000

It is used to select the PLC operation mode for program control given timing.

LED unit position: circulation mode

0: Stop after a single cycle After accepting the running command, the inverter starts to run from the first speed, the time unit is set by the LED ten digits of **[FC-15]**; the running time is set by the parameters **[FC-16** \sim **FC-30]**; the running direction and plus The deceleration time is selected by the parameter **[FC-31** \sim **FC-45]**; when the running time is up, it will switch to the next stage of speed operation, and the time, direction, acceleration and deceleration time of each stage of speed operation can be set separately; The frequency converter outputs "0" frequency. If the running time of a certain stage is zero, the stage is skipped during operation.

1: Continuous cycle After the inverter runs the 15th stage speed, it returns to the 1st stage speed and restarts the operation, the cycle continues. The time unit is set by the ten-digit LED of [FC-15]; the running time is set by the parameter [FC-16 ~ FC-30]; the running direction and acceleration / deceleration time are selected by the parameter [FC-31 ~ FC-45].

2: Keep the final value after a single cycle The inverter does not stop after running a single cycle, and continues to run at the speed of the last stage where the running time is not zero. The time unit is set by the ten-digit LED of **[FC-15]**; the running time is set by the parameter **[FC-16 ~ FC-30]**; the running direction and acceleration / deceleration time are selected by the parameter **[FC-31 ~ FC-45]**.

Note: The acceleration and deceleration time when the PLC is executed is specified by the ten digits of [FC-31 to FC-45] LED, and is not affected by the terminal selection.

Tens of LEDs: Timing unit Used to set the time unit for timing when the program is running.

- 0: seconds
- 1: point
- 2: hours

Hundreds of LEDs: Power-off storage method

- 0: do not store
- 1: storage

This parameter is defined as whether to store the current state of program operation (number of running stages, remaining time in this stage, acceleration and deceleration, running direction, etc.) when the inverter is selected to run when the program is running. If the power-off storage is selected, the LED thousands parameter of [FC-15] can be used to define the recovery method of the program operation after the next power-on. If you want to ensure that the inverter can continue the state before the power failure after the instantaneous power failure is restored, you should set this parameter to "1".

Thousands of LEDs: startup mode

- 0: restart from the first stage
- 1: Re-run from the stage of shutdown

2: Continue to run with the remaining time at shutdown

This parameter defines the operation mode when the program is restarted after being interrupted due to various reasons (stop, failure, power failure, etc.) during the running of the program.

Select "0" mode, the inverter will restart at the first speed.

- Select "1" mode, the inverter will re-time running in the momentary interruption phase.
- Select "2" mode, the inverter will run at the moment of interruption, and run according to the remaining time of the moment of interruption.
- Tip: The output frequency when the program is running is limited by the upper and lower frequency limits. When the given frequency is less than the lower limit frequency, run according to [F0-13] lower limit frequency operation mode.

FC-16	Multi-segment frequency 1 segment running time	Setting range: 0.0~6500.0(s/m/h)	Default: 10.0
FC-17	Multi-segment frequency 2 segment running time	Setting range: 0.0~6500.0(s/m/h)	Default: 10.0
FC-18	Multi-segment frequency 3 segment running time	Setting range: 0.0~6500.0(s/m/h)	Default: 10.0
FC-19	Multi-segment frequency 4 segment running time	Setting range: 0.0~6500.0(s/m/h)	Default: 10.0
FC-20	Multi-segment frequency 5 segment running time	Setting range: 0.0~6500.0(s/m/h)	Default: 10.0
FC-21	Multi-segment frequency 6 segment running time	Setting range: 0.0~6500.0(s/m/h)	Default: 10.0
FC-22	Multi-segment frequency 7 segment running time	Setting range: 0.0~6500.0(s/m/h)	Default: 10.0
FC-23	Multi-segment frequency 8 segment running time	Setting range: 0.0~6500.0(s/m/h)	Default: 10.0
FC-24	Multi-segment frequency 9 segment running time	Setting range: 0.0~6500.0(s/m/h)	Default: 10.0
FC-25	Multi-segment frequency 10 segment running time	Setting range: 0.0~6500.0(s/m/h)	Default: 10.0
FC-26	Multi-segment frequency 11 segment running time	Setting range: 0.0~6500.0(s/m/h)	Default: 10.0
FC-27	Multi-segment frequency 12 segment running time	Setting range: 0.0~6500.0(s/m/h)	Default: 10.0
FC-28	Multi-segment frequency 13 segment running time	Setting range: 0.0~6500.0(s/m/h)	Default: 10.0
FC-29	Multi-segment frequency 14 segment running time	Setting range: 0.0~6500.0(s/m/h)	Default: 10.0
FC-30	Multi-segment frequency 15 segment running time	Setting range: 0.0 \sim 6500.0(s/m/h)	Default: 10.0

Set the running time of the 15-segment speed respectively, the time unit is determined by the setting value of

FC-31			Default: 0000
FC-32			Default: 0000
FC-33			Default: 0000
FC-34			Default: 0000
FC-35			Default: 0000
FC-36			Default: 0000
FC-37	Multi-section frequency 1-15		Default: 0000
FC-38	direction and acceleration /	Setting range: 0000 \sim 0031	Default: 0000
FC-39	deceleration time		Default: 0000
FC-40			Default: 0000
FC-41			Default: 0000
FC-42			Default: 0000
FC-43			Default: 0000
FC-44			Default: 0000
FC-45			Default: 0000

When the program is running, set the running direction and acceleration / deceleration time of 15 speeds respectively.

LED unit position: running direction of this segment

0: forward

1: reverse

When the parameter [F0-16] LED tens is set to "1" and only forward command is allowed, if the segment speed is set to reverse, it will run at 0.00Hz.

Tens place of LED: acceleration and deceleration time of this segment

- 0: acceleration and deceleration time 0
- 1: Acceleration and deceleration time 1
- 2: Acceleration and deceleration time 2
- 3: Acceleration and deceleration time 3

Hundreds of LEDs: reserved

Thousands of LEDs: reserved

4.14 Communication control function parameters

	Fd-00	Master-slave choice	Setting range: 0 \sim 1	Default: 0
--	-------	---------------------	---------------------------	------------

Select the inverter as the master or slave when doing Modbus communication or CAN communication. For a detailed introduction of Modbus communication, please refer to Appendix 2 (Modbus Communication Protocol).

LED unit: Modbus communication master-slave selection

0: Slave The inverter acts as a slave, and the communication address is set by parameter **[Fd-01]**. At this time, the inverter accepts the command from the host on the communication network, and selects whether to reply data during the write operation according to the parameter **[Fd-08]**. The delay time of the reply command is set by the parameter **[Fd-05]**.

1: Master As the master, the inverter sends data of the master to the communication network through broadcast commands, and all slaves accept master commands. The data sent by the host is set by the parameter **[Fd-09]**.

Tens of LEDs: reserved

Hundreds of LEDs: reserved

Thousands of LEDs: reserved

Note: When the inverter is used as a host for networking, all network slaves must also be K-easy's inverters for proper networking. The host sends broadcast data through a custom free protocol.

Fd-01 485 communication address Setting range: 1~247 Default: 1					
This p	arameter defines the communica	ation address of the machine as a Modbus c	ommunication slave. If ess.		
the machin	e is used as the host, this paran	neter is meaningless. 0 is the broadcast addr			

Fd-02	Communication baud rate selection	Setting range: 0 \sim 5	Default: 3
-------	-----------------------------------	---------------------------	------------

LED unit: Modbus communication baud rate Set the baud rate during Modbus communication.

- 0: 1200 bps
- 1: 2400 bps
- 2: 4800 bps
- 3: 9600 bps
- 4: 19200 bps
- 5: 38400 bps

Tens of LEDs: reserved

Hundreds of LEDs: reserved

Thousands of LEDs: reserved

Fd-03 Modbus data format Setting range: 0~5 Default: 0	Fd-03	Modbus data format	Setting range: 0~5	Default: 0	
--	-------	--------------------	--------------------	------------	--

Set the data format during Modbus communication. If the data format is set differently, communication will not be possible.

0: (N, 8, 1) No parity, data bit: 8, stop bit: 1

1: (E, 8, 1) Even parity, data bit: 8, stop bit: 1

2: (O, 8, 1) odd parity, data bit: 8, stop bit: 1

3: (N, 8, 2) No parity, data bit: 8, stop bit: 2

4: (E, 8, 2) Even parity, data bit: 8, stop bit: 2

5: (O, 8, 2) odd parity, data bit: 8, stop bit: 2

Fd-04	Communication setting	ratio	Setting range: 0.00 \sim 5.00	Default: 1.00

The communication command sent by the host computer is multiplied by this parameter, and used as the communication given value or feedback value of this machine. The communication commands of the host computer can be modified in proportion.

	Fd-05	Communication response delay	Setting range: 0 \sim 500ms	Default: 0ms
--	-------	------------------------------	-------------------------------	--------------

This parameter defines the intermediate interval time when the frequency converter is used as Modbus communication slave station, and the response data is sent to the upper computer after the data reception is completed. If the response delay is less than the system processing time, the response delay is based on the system processing time. If the response delay is longer than the system processing time, the system will wait for the data after processing the data.

Fd-06	Communication timeout failure time	Setting range: 0.1~100.0s	Default: 1.0s
Fd-07	Communication fault action selection	Setting range: 0 \sim 3	Default: 0

Modbus communication timeout fault time: If the interval time between one communication and the next communication exceeds the communication timeout time, it is considered that the communication has a disconnection fault, and **[Fd-07]** determines the fault disconnection action mode.

Modbus communication fault action mode selection:

- **0: Do not detect timeout fault** The inverter does not perform fault detection and always runs according to the last communication command.
- 1: Alarm and stop freely When the communication given command set by the inverter exceeds the time set by [Fd-06], it still does not receive the next frame command or any other communication command, the inverter reports fault E. CE and stops.
- 2: Warning and continue to run When the running command mode of the inverter is given by the communication mode, after setting the communication given command over the time set by [Fd-06], still no new communication command is received, the inverter reports warning A.074 and presses The last communication command runs.
- **3:** Forced shutdown After the communication given command set by the inverter exceeds the time set by **[Fd-06]**, it still does not receive the next frame command or any other communication command, and the inverter stops.

Fd-08	Transmission response processing	Setting range: 0 \sim 1	Default: 0
-------	----------------------------------	---------------------------	------------

This parameter selects whether the inverter responds when the host computer sends a write command to the inverter. If the host computer needs the inverter to reply information, the inverter will occupy the communication bus in time-sharing. When doing communication control, the host computer needs to reserve enough time to reply the inverter information. If the host computer does not need the inverter to reply information, and only sends instructions to the inverter, you can choose to write without response to improve the utilization efficiency of the communication bus. This parameter is only valid for write operations and has no effect on read operations.

0: There is a response to the write operation

1: No response to write operation

Fd-09Host sending selectionSetting range: 0000~AAAADefault: 0031	[:] d-09	Host sending selection	Setting range: 0000~AAAA	Default: 0031
--	-------------------	------------------------	--------------------------	---------------

The data sent to the slave when the inverter is set as the Modbus communication master. At this time, the master inverter sends a broadcast command, and all slaves will receive the master to send the command.

The host can send up to 4 frames of data in polling mode, which correspond to the setting values of LED unit digit, tens digit, hundreds digit and thousands digit respectively. When set to invalid, no data is sent.

LED single digit: the first group to send frame selection

0: invalid

- 1: Run the command
- 2: given frequency
- 3: output frequency
- 4: upper limit frequency
- 5: given torque
- 6: output torque
- 7: reserved
- 8: reserved
- 9: PID given
- A: PID feedback

Tens of LEDs: Selection of the second group of transmitted frames

Hundreds of LEDs: The third group sends frame selection

Thousands of LEDs: The fourth group sends frame selection

Same as above.

Host broadcast data	Slave receiving corresponding address and application
1: Run command given	0x3001, can be used as the given source of running command
2: Host given frequency	0x3000, can be used as the given frequency of communication
3: Host output frequency	0x3000, can be used as the given frequency of communication
4: Host upper limit frequency	0x3004, can be used as the upper limit frequency for communication
5: Host given torque	0x3005, can be used as a given torque for communication
6: Host output torque	0x3005, can be used as a given torque for communication
7: Torque control forward speed limit	0x3006, can be used as the communication given torque control forward speed limit
8: torque control reverse speed limit	0x3007, it can be used as the communication given torque control reverse speed limit
9: Host given PID	0x3008, can be given as PID communication
A: Host feedback PID	0x3009, can be given as PID communication

Fd-10	RS485 communication port configuration	Setting range: 0~1	Default: 0
RS485 cor	nmunication port configuration		
0: Configure for ModBus communication		General ModBus usage.	
1: Other agreements			

4.15 Schematic diagram of the input terminal disconnected and connected state:

Schematic diagram of the input terminal on / off state

Schematic diagram of the output terminal disconnected and connected state:

Schematic diagram of the output terminal on / off state

Chapter 5 Function Parameter Table

5.1 Explanation of each meaning in the function code parameter summary table

Profile field	Explanation
Function code number	Code representing the function code, such as: F0-00
Function code name	Name of the function code, explaining the function of the function code
Factory default	The setting value after the function code is restored to the factory value (F0-19)
Attributes	•: The parameter operation can be changed; O: The parameter operation cannot be changed; X: The parameter can only be read; X: The parameter is related to the inverter model;
Mailing address	Communication address when using communication (such as RS485) to read and write function code values

5.2 Basic parameter group

Function code number	Function code name	Factory default	Set value range and definition	Attribut es	Maili ng addr ess
F0-00	G / P model display	Model settings	0: G type machine 1: P type machine	0	0x00 0
F0-01	Control operating mode	0	0: VF control 1: Vector control without PG 2: With PG vector control 3: Voltage-frequency separation control	0	0x00 1
F0-02	Operation instruction	0	0: keyboard 1: terminal 2: RS485 communication	0	0x00 2
F0-03	Main frequency given source	0	0: keyboard digital given frequency 1: keyboard potentiometer given	•	0x00 3
F0-04	Auxiliary frequency reference source	1	 Analog quantity Al1 given Analog quantity Al2 given Terminal pulse HDI setting RS485 communication given Terminal UP / DW control PID control given Program control (PLC) given Multi-stage speed reference 	•	0x00 4
F0-05	Auxiliary frequency reference source	0	0: take maximum output frequency as reference source 1: Take the main frequency as the reference source	•	0x00 5

F0-06	Frequency command overlay selection	0	0: main frequency 1: auxiliary frequency 2: main + auxiliary 3: main-auxiliary 4: The maximum of both 5: The minimum of the two	•	0x00 6
F0-07	Run command bundle	0000	Units: keyboard command binding Tens: terminal command binding Hundreds: communication command bundle 1: Keyboard number setting 2: Potentiometer setting 3: Al1 given 4: Al2 given 5: HDI given 6: RS485 given 7: Terminal UP / DW 8: PID given 9: PLC given A: Multi-stage speed given 0: No binding	٠	0x00 7
F0-08	Keyboard digital setting frequency	50.00Hz	0.00 \sim upper limit frequency	•	0x00 8
F0-09	Maximum frequency	50.00Hz	Upper limit frequency \sim 600.00Hz	0	0x00 9
F0-10	Upper frequency source selection	0	0: upper limit frequency digital setting 1: keyboard potentiometer given 2: Analog quantity Al1 given 3: Analog quantity Al2 given 4: Terminal pulse HDI setting 5: RS485 communication given	•	0x00 A
F0-11	Digital setting of upper limit frequency	50.00Hz	Lower limit frequency~Maximum frequency	•	0x00 B
F0-12	Lower limit frequency	0.00Hz	0.00 \sim upper limit frequency	•	0x00 C
F0-13	Lower frequency	1	0: stop output 1: run at the lower limit frequency	0	0x00 D
F0-14	Acceleration time 0	Model settings	0.01- 650.000	*	0x00 E
F0-15	Deceleration time 0	Model settings	0.017-050.005	*	0x00 F
F0-16	Choice of running direction	0000	Units: reverse running direction 0: direction unchanged 1: direction reversed Tens: prohibition of running direction 0: invalid 1: reverse rotation prohibited 2: forward rotation prohibited Hundreds: frequency control direction command 0: invalid 1: valid	0	0x01 0

F0-17	PWM carrier frequency	Model settings	0.7~16.0kHz	*	
F0-18	PWM control mode	1111	Units: carrier and temperature correlation 0: Irrelevant 1: Related Tens: Carrier is related to output frequency 0: Irrelevant 1: Related Hundreds: random PWM enable 0: Disable 1: Enable Thousands: PWM modulation 0: three-phase modulation 1: automatic switching	•	
F0-19	Parameter initialization	0	 No operation Restore factory value (do not restore motor parameters) Restore factory defaults (restore motor parameters) Clear fault record 	0	0x01 3

Start and stop control parameter group

Function code number	Function code name	Factory default	Set value range and definition	Att rib ute	Mailing addres s
F1-00	Start method	0	0: start directly 1: Start after DC injection 2: Start after speed tracking	0	0x0100
F1-01	Start pre-excitation time	0.00s	0.00~60.00s	0	0x0101
F1-02	Start frequency	0.50Hz	0.00~60.00Hz	0	0x0102
F1-03	Start frequency hold	0.0s	0.0~50.0s	0	0x0103
F1-04	DC injection current	60.0%	0.0~150.0%	0	0x0104
F1-05	DC injection time	0.0s	0.0~60.0s	0	0x0105
F1-06	Speed tracking	0.50s	0.00~60.00s	0	0x0106
F1-07	Speed tracking shutdown delay	1.00s	0.00~60.00s	0	0x0107
F1-08~F1-0	9	Reserved			
F1-10	Stop mode	0	0: Deceleration stop 1: Free stop	•	0x010A
F1-11	Starting frequency of DC braking at stop	1.00Hz	0.00~50.00Hz	0	0x010B
F1-12	DC braking current at shutdown	60.0%	0.0~150.0%	0	0x010C
F1-13	DC brake holding time at stop	0.0s	0.0~60.0s	0	0x010D
F1-14	Minimum output frequency during shutdown	0.50Hz	0.00~50.00Hz	•	0x010E
F1-15	Reserved				0x010F
F1-16	Acceleration and deceleration	0010	Units: time base selection 0: Maximum frequency 1: Fixed frequency 50Hz 2: Set frequency Tens: S acceleration and deceleration options 0: linear acceleration and deceleration 1: S curve acceleration and deceleration Hundreds, Thousands: reserved	0	0x0110
F1-17	Acceleration start S curve time	0.10s	0.00~10.00	0	0x0111

F1-18	S curve time at the end of acceleration	0.10s	0.00~10.00	0	0x0112
F1-19	Deceleration start S curve time	0.10s	0.00~10.00	0	0x0113
F1-20	S curve time at the end of deceleration	0.10s	0.00~10.00	0	0x0114
F1-21	Acceleration time 1	10.00s	0.01~650.00s	٠	0x0115
F1-22	Deceleration time 1	10.00s	0.01~650.00s	•	0x0116
F1-23	Acceleration time 2	10.00s	0.01~650.00s	•	0x0117
F1-24	Deceleration time 2	10.00s	0.01~650.00s	•	0x0118
F1-25	Acceleration time 3	10.00s	0.01~650.00s	•	0x0119
F1-26	Deceleration time 3	10.00s	0.01~650.00s	•	0x011A
F1-27	Emergency stop deceleration time	1.00s	0.01~650.00s	•	0x011B
F1-28	Forward and reverse dead time	0.0s	0.0~120.0s	0	0x011C
F1-29	Zero speed torque frequency threshold	0.50Hz	0.00~10.00Hz	•	0x011D
F1-30	Zero speed torque retention coefficient	60.0%	0.0~150.0%	•	0x011E
F1-31	Zero speed torque	0	0.0~6000.0s	•	0x011F
	holding time	•	When set to 6000.0s, keep	•	0,0111
F1-32~F1-3	4	Reserved			
F1-35	Action selection after power failure	0	0: invalid 1: valid	0	0x0123
F1-36	Waiting time after power failure	0.50s	0.00~60.00s	0	0x0124
F1-37	Reserved				0x0125
F1-38	Jog running frequency setting	5.00Hz	$0.00 \sim$ maximum frequency	•	0x0126
F1-39	Jog acceleration time	10.00s	0.01~650.00s	•	0x0127
F1-40	Jog deceleration time	10.00s	0.01~650.00s	•	0x0128

Multi-function terminal parameter group

Functi on	Function code name	Factory default	Set value range and definition	Att rib	Mailing address
F2-00	X1 terminal input function selection	1	See Schedule	0	0x200

F2-01	X2 terminal input function selection	2	See Schedule	0	0x201
F2-02	X3 terminal input function selection	4	See Schedule	0	0x202
F2-03	X4 terminal input function selection	5	See Schedule	0	0x203
F2-04	X5 terminal input function selection	6	See Schedule	0	0x204
F2-05 \sim	F2-07	Reserved		-	
F2-08	X1 \sim X4 terminal characteristic selection	0000	0: closed effective 1: open effective Units: X1 Tens: X2 Hundreds: X3 Thousands: X4	•	0x208
F2-09	X5 terminal feature selection	0000	0: closed effective 1: open effective Units: X5 Tens: reserved Hundreds: reserved Thousands: reserved	•	0x209
F2-10	X1 effective detection delay	0.010	0.000~6.000s	•	0x20A
F2-11	X1 invalid detection delay	0.010	0.000~6.000s	•	0x20B
F2-12	X2 effective detection delay	0.010	0.000~6.000s	•	0x20C
F2-13	X2 invalid detection delay	0.010	0.000~6.000s	•	0x20D
F2-14	X3 effective detection delay	0.010	0.000~6.000s	•	0x20E
F2-15	X3 invalid detection delay	0.010	0.000~6.000s	•	0x20F
F2-16	X4 effective detection delay	0.010	0.000~6.000s	•	0x210
F2-17	X4 invalid detection delay	0.010	0.000~6.000s	•	0x211
F2-18	X5 effective detection delay	0.010	0.000~6.000s	•	0x212
F2-19	X5 invalid detection delay	0.010	0.000~6.000s	•	0x213
F2-20	Terminal control operation mode	0	0: Two-wire system 1 1: Two-wire system 2 2: Three-wire system 1 3: Three-wire system 2	0	0x21A
F2-21	Terminal start protection	0111	0: off 1: on Units: terminal start protection when exiting abnormal Ten digits: Start protection of the jog terminal when exiting abnormally Hundreds: start protection when the command channel is switched to the terminal	0	0x21B

			Thousands: reserved		
F2-22	HDI input minimum frequency	0.00kHz	0.00~50.00kHz	•	0x21E
F2-23	HDI minimum frequency corresponding setting	0.00%	0.00~100.00%	•	0x21F
F2-24	HDI input maximum frequency	50.00kHz	0.00~50.00kHz	•	0x220
F2-25	HDI maximum frequency corresponding setting	100.00%	0.00~100.00%	•	0x221
F2-26	HDI filter time	0.100s	0.000~9.000s	•	0x222
F2-27	HDI cutoff frequency	0.010kHz	0.000~1.000kHz	•	0x223
F2-28	Terminal UP / DW control selection	0	0: frequency power-off storage 1: Frequency is not stored when power is off 2: Adjustable during operation, cleared at shutdown	0	0x224
F2-29	Terminal UP / DW control frequency rate	0.50Hz/s	0.01~50.00Hz/s	•	0x225
F2-30	Reserved				0x226
F2-31	Timer time unit	0	0: second 1: minute 2: hour	•	0x227
F2-32	Timer setting	0	0~65000	•	0x228
F2-33	Reserved				0x229
F2-34	Counter input frequency division	0	0~6000	•	0x22A
F2-35	Counter maximum	1000	0~65000	•	0x22B
F2-36	Counter set value	500	0~65000	•	0x22C
F2-37	Reserved				0x22D
F2-38	Output terminal polarity selection	0000	0: positive polarity 1: negative polarity Units: Y terminal Tens: Relay 1 Hundreds: relay 2 Thousands: reserved	•	0x22E
F2-39	Output terminal 1	1	See attached table	•	0x22F
F2-40	Relay output 1	4	See attached table	•	0x230
F2-41	Relay output 2	11	See attached table	•	0x231

F2-42	Y1 output delay time	0.010s	0.000~6.000s	•	0x232
F2-43	Relay 1 output delay	0.010s	0.000~6.000s	•	0x233
F2-44	Relay 2 output delay	0.010s	0.000~6.000s	•	0x234
F2-45	Output frequency level 1 (FDT1)	30.00Hz	0.00 \sim maximum frequency	•	0x235
F2-46	FDT1 lag	1.00Hz	0.00 \sim maximum frequency	•	0x236
F2-47	Output frequency level 2 (FDT2)	50.00Hz	0.00 \sim maximum frequency	•	0x237
F2-48	FDT2 lag	1.00Hz	0.00 \sim maximum frequency	•	0x238
F2-49	The given frequency reaches the detection value	2.00Hz	0.00~50.00Hz	•	0x239

Analog terminal parameter group

Functi on code numb er	Function code name	Factory default	Set value range and definition	Att rib ut es	Mailing address
F3-00	Al1lower limit	0.00V	0.00~10.00V	•	0x300
F3-01	Al1 lower limit corresponding setting	0.00%	-100.00~100.00%	•	0x301
F3-02	AI1 upper limit	10.00V	0.00~10.00V	•	0x302
F3-03	Al1 upper limit corresponding setting	100.00%	-100.00~100.00%	•	0x303
F3-04	AI1 filter time	0.010s	0.000~6.000s	•	0x304
F3-05	Al1 voltage / current selection	0	0: voltage 1: current	•	0x305
F3-06	AI2 lower limit	0.00V	0.00~10.00V	•	0x306
F3-07	AI2 lower limit corresponding setting	0.00%	0.00~100.00%	•	0x307
F3-08	AI2 upper limit	10.00V	0.00~10.00V	•	0x308
F3-09	AI2 upper limit corresponding setting	100.00%	0.00~100.00%	•	0x309
F3-10	AI2 filter time	0.010s	0.000~6.000s	•	0x30A
F3-11	Al2 voltage / current	0	0: voltage 1: current	•	0x30B
F3-12	Al1 terminal function selection	0	See X terminal function	0	0x30C
F3-13	AI1 high level setting	70.00%	0.00~100.00%	•	0x30D
F3-14	Al1 low level setting	30.00%	0.00~100.00%	•	0x30E

F3-15	Al2 terminal function selection	0	See X terminal function	0	0x30F
F3-16	AI2 high level setting	70.00%	0.00~100.00%	•	0x310
F3-17	AI2 low level setting	30.00%	0.00~100.00%	•	0x311
F3-18	Analog quantity to set the terminal effective state	0000	0: low level 1: high level Units: Al1 Tens: Al2 Hundreds: reserved Thousands: reserved	•	0x312
F3-19	Analog input curve selection	0000	Units: AI1 0: straight line 1: curve 1 2: curve 2 Tens: AI2 Hundreds, Thousands: reserved	•	0x313
F3-20	Reserved				0x314
F3-21	Curve 1 lower limit	0.00V	0.00~10.00V	•	0x315
F3-22	Curve 1 lower limit corresponding setting	0.0%	0.00~100.00%	•	0x316
F3-23	Curve 1 Inflection point 1 Input voltage	3.00V	0.00~10.00V	•	0x317
F3-24	Curve 1 turning point 1 corresponding setting	30.00%	0.00~100.00%	•	0x318
F3-25	Curve 1 Inflection point 2 Input voltage	6.00V	0.00~10.00V	•	0x319
F3-26	Curve 1 turning point 2 corresponding setting	60.00%	0.00~100.00%	•	0x31A
F3-27	Curve 1 upper limit	10.0V	0.00~10.00V	•	0x31B
F3-28	Curve 1 upper limit corresponding setting	100.00%	0.00~100.00%	•	0x31C
F3-29	Curve 2 lower limit	0.00V	0.00~10.00V	•	0x31D
F3-30	Curve 2 lower limit corresponding setting	0.00%	0.00~100.00%	•	0x31E
F3-31	Curve 2 Inflection point 1 Input voltage	3.00V	0.00~10.00V	•	0x31F
F3-32	Curve 2 inflection point 1 corresponding setting	30.00%	0.00~100.00%	•	0x320
F3-33	Curve 2 Inflection point 2 Input voltage	6.00V	0.00~10.00V	•	0x321
F3-34	Curve 2 Inflection point 2 corresponding setting	60.00%	0.00~100.00%	•	0x322

F3-35	Curve 2 upper limit	10.00V	0.00~10.00V	•	0x323
F3-36	Curve 2 upper limit corresponding setting	100.00%	0.00~100.00%	•	0x324
F3-37	AO output signal selection	0000	Units: AO1 0: $0 \sim 10V$ 1: 4.00 ~ 20.00 mA 2: 0.00 ~ 20.00 mA Ten: AO2 0: $0 \sim 10V$ 1: 4.00 ~ 20.00 mA 2: 0.00 ~ 20.00 mA 3: FM frequency pulse output Hundreds, Thousands: reserved	•	0x325
F3-38	AO1 output selection	0	0: given frequency 1: output	•	0x326
F3-39	A02 output selection	1	frequency 2: output current 3: input voltage 4: Output voltage 5: Mechanical speed 6: given torque 7: output torque 8: PID given amount 9: PID feedback amount 10: output power 11: bus voltage 12: Al1 input value 13: Al2 input value 14: HDI input value 15: module temperature 1 16: Module temperature 2 17: Communication given	•	0x327
F3-40	AO1 output gain	100.0%	25.0~200.0%	•	0x328
F3-41	A01 output signal offset	0.0%	-10.0~10.0%	•	0x329
F3-42	A01 output filter	0.010s	0.000~6.000s	•	0x32A
F3-43	AO2 output gain	100.0%	25.0~200.0%	•	0x32B
F3-44	A02 Analog output signal offset	0.0%	-10.0%~10.0%	•	0x32C
F3-45	A02 output filter	0.010s	0.000~6.000s	•	0x32D
F3-46	A02FM frequency output lower limit	0.20kHz	0.00~100.00kHz	•	0x32E
F3-47	A02FM frequency output upper limit	50.00kHz	0.00~100.00kHz	•	0x32F

Keyboard parameter group

Functi on code numb er	Function code name	Factory default	Set value range and definition	Att rib ut es	Mailing address
F4-00	Parameter and key lock selection	0	0: Not locked 1: Function parameter locked 2: Function parameters and key lock (except RUN / STOP / MF.K) 3: The function parameters and keys are all locked	•	0x400
F4-01	User password	0	0~9999	•	0x401
F4-02~I	F4-06				0x402
F4-07	Keyboard MF.K selection	0	0: reverse 1: jog	0	0x407
F4-08	Keyboard STOP key setting	1	0: Non-keyboard control mode is invalid 1: Non-keyboard control mode stops according to the stop mode 2: Non-keyboard control mode stops in free mode	0	0x408
F4-09	Keyboard up and down key selection	0011	Units: keyboard up and down keys to modify selection 0: invalid 1: Used to adjust the frequency given by keyboard F0-08 2: Used to adjust PID keyboard given Fb-01 Ten digits: Power-off storage 0: frequency is not stored when power off 1: Frequency power-off storage Hundreds place: action limit 0: Adjustable running stop 1: Adjustable only during operation, keep at shutdown 2: Adjustable during operation, cleared at shutdown Thousands: reserved	0	0x409
F4-10	Keyboard potentiometer lower limit	0.50V	0.00~5.00V	•	0x40A

F4-11	Corresponding to the lower limit of keyboard potentiometer	0.00	0.00~100.00%	•	0x40B
F4-12	Upper limit value of keyboard potentiometer	4.50V	0.00~5.00V	•	0x40C
F4-13	Corresponding to the upper limit of keyboard	100.00	0.00~100.00%	•	0x40D
F4-14	Run display on the first line of the keyboard	1101	Tens of one's place: the first group displays 00 \sim 63 Hundreds and thousandss: the second group displays 00 \sim 63	•	0x40E
F4-15	Run display on the first line of the keyboard	0402	As defined in F4-14	•	0x40F
F4-16	Stop display on the first line of the keyboard	1100	As defined in F4-14	•	0x410
F4-17	Stop display on the first line of the keyboard	0402	As defined in F4-14	•	0x411
F4-18	Run display on the second line of the keyboard	0402	As defined in F4-14	•	0x412
F4-19	Run display on the second line of the keyboard	1210	As defined in F4-14	•	0x413
F4-20	Stop display on the second line of the keyboard	0402	As defined in F4-14	•	0x414
F4-21	Stop display on the second line of the keyboard	1210	As defined in F4-14	•	0x415
F4-22	Keyboard display item settings	0000	Units: output frequency display selection 0: target frequency 1: running frequency Hundreds: power display dimension 0: percentage (%) 1: kilowatt (KW)	•	0x416
F4-23	Reserved				
F4-24	Speed display coefficient	100.0%	0.0~500.0%	•	0x418
F4-25	Power display coefficient	100.0%	0.0~500.0%	•	0x419
F4-26~F4-27					

Motor parameter group

Functi on code numb er	Function code name	Factory default	Set value range and definition	Attri bute s	Mailing address
F5-00	Motor type	0	0: asynchronous motor (AM)	×	0x500
F5-01	Number of motor poles	4	2~98	0	0x501
F5-02	Motor rated power	Model settings	0.1~1000.0kW	*	0x502
F5-03	Motor rated frequency	Model settings	0.01~maximum frequency	*	0x503
F5-04	Motor rated speed	Model settings	1~65000rpm	*	0x504
F5-05	Motor rated voltage	Model settings	0~1500V	*	0x505
F5-06	Motor rated current	Model settings	0.1~2000.0A	*	0x506
F5-07	Asynchronous motor no-load current	Model settings	0.1~650.0A	*	0x507
F5-08	Asynchronous motor stator resistance	Model settings	0.01~50.00%	*	0x508
F5-09	Rotor resistance of asynchronous motor	Model settings	0.01~50.00%	*	0x509
F5-10	Asynchronous motor stator leakage inductance	Model settings	0.01~50.00%	*	0x50A
F5-11	Asynchronous motor stator inductance	Model settings	0.1~2000.0%	*	0x50B
F5-12~I	-5-19	Reserved			
F5-20	Motor parameter identification	0	0: no operation 1: rotation identification 2: static identification 3: reserved	0	0x514
F5-21~I	-5-29				
F5-30	Speed feedback or encoder type	0000	Units: encoder type 0: ABZ 1: Rotation Tens: encoder direction 0: consistent direction 1: opposite direction Hundreds: disconnection detection 0: off 1: on Thousands: Z pulse correction is enabled	0	0x51E

F5-31	ABZ encoder line number	1024	1	0	0x51F
F5-32	Disconnection detection time	2.000s	0.100~60.000s	•	0x520
F5-33	Resolver pole number	2	2~128	0	0x521
F5-34~F5-35		Reserved			
F5-36	Encoder speed filter	1.0ms	0.0~100.0ms	•	0x524

Vector control parameter group

Functi on code numb er	Function code name	Factory default	Set value range and definition	Attri bute s	Mailing address
F6-00	Speed loop proportional gain 1	10.00	0.01~100.00	•	0x600
F6-01	Speed loop integration time 1	0.500s	0.000~6.000s	•	0x601
F6-02	Speed loop filter time 1	0.0ms	0.0~100.0ms	•	0x602
F6-03	Speed loop switching frequency 1	5.00Hz	[F6-07] \sim Upper limit	•	0x603
F6-04	Speed loop proportional gain 2	10.00	0.01~100.00	•	0x604
F6-05	Speed loop integration time 2	0.500s	0.000~6.000s	•	0x605
F6-06	Speed loop filter time 2	0.0ms	0.0~100.0ms	•	0x606
F6-07	Speed loop switching frequency 2	5.00Hz	0.00~[F6-03]	•	0x607
F6-08	Electric torque limit	180.0%	0.0~250.0%	•	0x608
F6-09	Generation torque limit	180.0%	0.0~250.0%	•	0x609
F6-10	Current loop straight axis proportional gain	1.000	0.001~4.000	•	0x60A
F6-11	Current loop integral gain	1.000	0.001~4.000	•	0x60B
F6-12	Current loop cross axis proportional gain	1.000	0.001~4.000	•	0x60C
F6-13	Current loop cross axis integral gain	1.000	0.001~4.000	•	0x60D
F6-14	Reserved				0x60E
F6-15	Vector electric slip compensation	100.0%	0.0~250.0%	•	0x60F
F6-16∼I	-6-21				
F6-22	Over-excitation braking gain	100.0%	0.0~500.0%	0	0x616
F6-23	Over-excitation braking limit	100.0%	0.0~250.0%	0	0x617
F6-24	Vector control energy saving function	0	0: off 1: on	0	0x618
F6-25	Energy-saving control gain	50.0%	0.0~80.0%	•	0x619

F6-26	Energy-saving control low-pass filtering	0.010s	0.000~6.000s	•	0x61A
F6-27	Motor power limit in constant power zone	150.0%	0.0~250.0%	•	0x61B
F6-28~F6-69		Reserved			

Torque control parameter group

Functi on code numb er	Function code name	Factory default	Set value range and definition	Attri bute s	Mailing address
F7-00	Torque / speed control	0	0: speed control 1: torque control	٠	0x700
F7-01	Torque reference channel selection	0	0: keyboard number given 1: keyboard potentiometer given 2: Al1 3: Al2 4: HDI 5: RS485 communication given	•	0x701
F7-02	Torque keyboard digital setting	0.0%	0~100.0%	•	0x702
F7-03	Torque input lower limit	0.00%	0.00~100.00%	٠	0x703
F7-04	Lower limit corresponding setting	0.00%	-200.00~200.00%	•	0x704
F7-05	Torque input upper limit	100.00%	0.00~100.00%	•	0x705
F7-06	Upper limit corresponding setting	100.00%	-200.00~200.00%	•	0x706
F7-07	Reference torque filter time	0.100s	0.000~6.000s	٠	0x707
F7-08	Output torque upper limit	150.0%	0~200.0%	•	0x708
F7-09	Output torque lower limit	0%	0~200.0%	•	0x709
F7-10	Torque control forward speed limit selection	0	0: Function code F7-12 setting; 1: keyboard potentiometer × F7-12; 2: Al1 × F7-12; 3: Al2 × F7-12; 4: HDI × F7-12; 5: RS485 communication given × F7-12	•	0x70A

F7-11	Torque control reverse speed limit selection	0	0: Function code F7-13 setting; 1: keyboard potentiometer × F7-13; 2: Al1 × F7-13; 3: Al2 × F7-13; 4: HDI × F7-13; 5: RS485 communication given × F7-13	•	0x70B
F7-12	Torque control forward maximum speed limit	100.0%	0.0~100.0%	•	0x70C
F7-13	Torque control reverse maximum speed limit	100.0%	0.0 \sim 100.0%	•	0x70D
F7-14	Reserved				0x70E

V / F control parameter group

Functi on code	Function code name	Factory default	Set value range and definition	Attri bute s	Mailing address
F8-00	Linear V / F curve selection	0	0: straight line V / F; 1-9: 1.1-1.9 power V / F; 10: square V / F; 11: Multi-point V / F (F8-01 ~ F8-10);	0	0x0800
F8-01	V / F voltage V1	3.0%	0.0~100.0%	0	0x0801
F8-02	V / F frequency F1	1.00Hz	0.00 \sim maximum frequency	0	0x0802
F8-03	V / F voltage V2	28.0%	0.0~100.0%	0	0x0803
F8-04	V / F frequency F2	10.00Hz	0.00 \sim maximum frequency	0	0x0804
F8-05	V / F voltage V3	55.0%	0.0~100.0%	0	0x0805
F8-06	V / F frequency F3	25.00Hz	0.00 \sim maximum frequency	0	0x0806
F8-07	V / F voltage V4	78.0%	0.0~100.0%	0	0x0807
F8-08	V / F frequency F4	37.50Hz	0.00 \sim maximum frequency	0	0x0808
F8-09	V / F voltage V5	100.0%	0.0~100.0%	0	0x0809
F8-10	V / F frequency F5	50.00Hz	0.00 \sim maximum frequency	0	0x080A
F8-11	Output voltage percentage	100.0%	25.0~120.0%	0	0x080B
F8-12	Torque boost	1.0%	$0.0\!\sim\!30.0\%(0.0\%$ automatic torque boost)	•	0x080C
F8-13	Torque boost cutoff frequency	100.0%	0.0~100.0%	•	0x080D
F8-14	V / F slip compensation gain	100.0%	0.0~200.0%	•	0x080E

F8-15	V / F slip compensation limit	100.0%	0.0~300.0%	•	0x080F
F8-16	V / F slip compensation filter	0.200s	0.000~6.000s	•	0x0810
F8-17	Oscillation suppression gain	100.0%	0.0~900.0%	•	0x0811
F8-18	Reserved				0x0812
F8-19	V / F automatic energy-saving control	0	0: off 1: on	0	0x0813
F8-20	Lower frequency limit of energy-saving buck frequency	15.00Hz	0.0~50.00Hz	0	0x0814
F8-21	Lower limit of energy-saving buck voltage	50.0%	20.0~100.0%	0	0x0815
F8-22	Energy-saving buck voltage regulation rate	0.010V/ MS	0.000~0.200V/MS	•	0x0816
F8-23	Energy saving buck voltage recovery rate	0.200V/ MS	0.000~2.000V/MS	•	0x0817
F8-24∼I	F8-29				
	Veltage frequency		0: Function code F8-31 setting 1: keyboard potentiometer given		
F8-30	separated output voltage source	0	 2: Analog quantity Al1 given 3: Analog quantity Al2 given 4: Pulse HDI given 5: PID output given 6: RS485 communication given 	•	0x081E
F8-30	bigital setting of voltage-frequency separation output voltage	0	 2: Analog quantity Al1 given 3: Analog quantity Al2 given 4: Pulse HDI given 5: PID output given 6: RS485 communication given 0.0%~100.0% 	•	0x081E 0x081F
F8-30 F8-31 F8-32	Voltage-frequency separated output voltage source Digital setting of voltage-frequency separation output voltage Voltage-frequency separation voltage acceleration time	0 0.0% 10.00s	2: Analog quantity Al1 given 3: Analog quantity Al2 given 4: Pulse HDI given 5: PID output given 6: RS485 communication given 0.0%~100.0% 0.0~100.00s	•	0x081E 0x081F 0x0820
F8-30 F8-31 F8-32 F8-33	voltage-frequency separated output voltage source Digital setting of voltage-frequency separation output voltage Voltage-frequency separation voltage acceleration time Voltage-frequency separation voltage deceleration time	0 0.0% 10.00s 10.00s	2: Analog quantity Al1 given 3: Analog quantity Al2 given 4: Pulse HDI given 5: PID output given 6: RS485 communication given 0.0%~100.0% 0.0~100.00s 0.0~100.00s	•	0x081E 0x081F 0x0820 0x0821

			1: After the output voltage drops to 0V, the output frequency drops again.	
F8-35~I	-8-38	Reserved		

Enhanced function parameter group

Functi on code	Function code name	Factory default	Set value range and definition	Attrib utes	Mailing addres s
F9-00	Jump frequency 1	0.00Hz	0.00 \sim maximum frequency	•	0x0900
F9-01	Jump frequency amplitude	0.00Hz	0.00 \sim maximum frequency	•	0x0901
F9-02	Jump frequency 2	0.00Hz	0.00 \sim maximum frequency	•	0x0902
F9-03	Jump frequency range 2	0.00Hz	0.00 \sim maximum frequency	•	0x0903
F9-04~F	9-07	Reserved			
F9-08	Swing frequency control	0	0: The swing frequency is invalid 1: The swing frequency is valid	•	0x0908
F9-09	Swing frequency amplitude control	0	0: relative center frequency 1: relative maximum frequency	•	0x0909
F9-10	Reserved				
F9-11	Swing frequency amplitude	10.0%	0.0~100.0%	•	0x090B
F9-12	Jump frequency amplitude	10.0%	0.0~50.0%	•	0x090C
F9-13	Swing frequency rise time	5.00s	0.00~650.00s	•	0x090D
F9-14	Wobble frequency fall time	5.00s	0.00~650.00s	•	0x090E
F9-15	Fan control	1	0: The fan runs after the inverter is powered on1: Shutdown is related to temperature, running is running2: The stop fan stops, the operation is related to the temperature	•	0x090F
F9-16	Energy consumption	0	0: off 1: on	•	0x0910
F9-17	Energy consumption braking action voltage	135.0%	115.0%~150.0%	•	0x0911
F9-18	Energy consumption braking utilization rate	10.0%	0.0~100.0%	•	0x0912
F9-19~F	9-20	Reserved			

Protection and fault parameter group

Functi on code	Function code name	Factory default	Set value range and definition	Attribu tes	Mailing address
FA-00	Overcurrent suppression function	0	0: suppression is always effective 1: Acceleration and deceleration are valid, constant speed is invalid	0	0xA00
FA-01	Overcurrent suppression point	160.0%	0.0 ~ 300.0%	•	0xA01
FA-02	Overcurrent suppression gain	100.0%	0.0 ~ 500.0%	•	0xA02
FA-03	Current hardware protection settings	0001	Units: wave-by-wave current limiting (CBC) 0: off 1: on Tens: reserved Hundreds: SC protection interference suppression 0: close 1: First-level interference suppression 2: Secondary interference suppression Thousands: reserved	0	0xA03
FA-04 \sim	FA-05	Reserved			
FA-06	Bus overvoltage suppression function	0012	Units: Overvoltage suppression control 0: Disable 1: Deceleration is effective 2: Both enabled during acceleration and deceleration Tens: over-excitation control 0: off 1: on Hundreds and thousandss: reserved	0	0xA06
FA-07	Bus overvoltage suppression point	130.0%	110.0 ~ 150.0%	*	0xA07
FA-08	Bus overvoltage suppression gain	100.0%	0.0 ~ 500.0%	•	0xA08
FA-09	Bus undervoltage suppression function	0	0: Disable 1: Enable	0	0xA09

FA-10	Bus undervoltage suppression point	80.0%	60.0 ~ 90.0%	*	0xA0A
FA-11	Bus undervoltage suppression gain	100.0%	0.0 ~ 500.0%	•	0xA0B
FA-12	Bus undervoltage protection point	60.0%	60.0 ~ 90.0%	*	0xA0C
FA-13	Reserved				0xA0D
FA-14	Short circuit detection after power on	0	0: off 1: on	0	0xA0E
FA-15	Phase loss protection	0011	Units: output phase loss protection 0: off 1: on Ten digits: input phase loss protection 0: close 1: open alarm 2: Open failure Hundreds, Thousands: reserved	0	0xA0F
FA-16	Motor overload protection factor	100.0%	0.0~250.0%	0	0xA10
FA-17	Load warning detection setting	0000	Units: detection selection (protection 1) 0: not detect 1: detect excessive load 2: Only detect excessive load at constant speed 3: Detect insufficient load 4: Only detect insufficient load at constant speed Tens: alarm selection 0: alarm, continue to run 1: Fault protection action and free stop Hundreds: detection selection (protection 2) 0: not detect 1: detect excessive load 2: Only detect excessive load at constant speed 3: Detect insufficient load 4: Only detect insufficient load at constant speed	0	0xA11

			Thousands: alarm selection 0: alarm, continue to run 1: Fault protection action and free stop		
FA-18	Load warning detection level 1	130.0%	0.0~200.0%	0	0xA12
FA-19	Load warning detection time 1	5.0s	0.0∼60.0s	0	0xA13
FA-20	Load warning detection level 2	30.0%	0.0~200.0%	0	0xA14
FA-21	Load warning detection time 2	5.0s	0.0∼60.0s	0	0xA15
FA-22	Reserved				0xA16
FA-23	Protective action of excessive speed deviation	0000	Units: detection selection 0: not detect 1: detect only at constant speed 2: Always check Tens: alarm selection 0: Free stop and report fault 1: Alarm and continue to run Hundreds, Thousands: reserved	0	0xA17
FA-24	Excessive speed deviation detection threshold	10.0%	0.0~60.0%	0	0xA18
FA-25	Detection time for excessive speed deviation	2.0s	0.0∼60.0s	0	0xA19

FA-26	Fast protection action	0000	Units: detection selection 0: not detect 1: detect only at constant speed 2: Always check Tens: alarm selection 0: Free stop and report fault 1: Alarm and continue to run Hundreds, Thousands: reserved	0	0xA1A
FA-27	Fast detection threshold	110.0%	0.0~150.0%	0	0xA1B
FA-28	Fast detection time	0.010s	0.000~2.000s	0	0xA1C
FA-29 \sim	FA-36	Reserved			
FA-37	Fault self-recovery times	0	0~5	0	0xA25
FA-38	Fault self-recovery interval time	1.0s	0.1~100.0s	0	0xA26
FA-39	Fault diagnosis information		See the fault information code table for details	×	0xA27
FA-40	Fault type		See the fault information code table for details	×	0xA28
FA-41	Fault operating frequency		0.00 \sim maximum frequency	×	0xA29
FA-42	Fault output voltage		0~1500V	×	0xA2A
FA-43	Fault output current		0.1~2000.0A	×	0xA2B
FA-44	Fault bus voltage		0~3000V	×	0xA2C
FA-45	Faulty module temperature		0∼100°C	×	0xA2D
FA-46	Faulty inverter status		Units: running direction 0: forward rotation 1: reverse rotation Ten digits: running status 0: stop 1: accelerate 2: Deceleration 3: Constant speed Hundreds, Thousands: reserved	x	0xA2E
FA-47	Fault input terminal status		See input terminal status diagram	×	0xA2F
FA-48	Fault output terminal status		See output terminal status diagram	×	0xA30
FA-49	Previous failure type		See the fault information code table for details	×	0xA31

FA-50	Operating frequency of previous fault		0.00 \sim maximum frequency	×	0xA32
FA-51	Previout fault output voltage		0~1500V	×	0xA33
FA-52	Previous fault output current		0.1~2000.0A	×	0xA34
FA-53	Bus voltage of previous fault		0~3000V	×	0xA35
FA-54	Module temperature of the previous failure	-	0∼100°C	×	0xA36
FA-55	Inverter status of previous failure		Units: running direction 0: forward rotation 1: reverse rotation Ten digits: running status 0: stop 1: accelerate 2: Deceleration 3: Constant speed Hundreds, Thousands: reserved	×	0xA37
FA-56	Output terminal status of previous fault		See input terminal status diagram	×	0xA38
FA-57	Output terminal status of previous fault		See output terminal status diagram	×	0xA39
FA-58	The first two failure types		See the fault information code table for details	×	0xA3A
FA-59	The first three failure types		See the fault information code table for details	×	0xA3B

PID control parameter group

Functi on code	Function code name	Factory default	Set value range and definition	Attribu tes	Mailing addres s
Fb-00	PID controller given signal source	0	0: keyboard number PID given 1: keyboard potentiometer given 2: Analog quantity Al1 given 3: Analog quantity Al2 given 4: Pulse HDI given 5: RS485 communication given 6: optional card 7: terminal selection	•	0xB00
Fb-01	Keyboard digital PID given / feedback	50.0%	0.00~100.0%	٠	0xB01

Fb-02	PID given acceleration and deceleration time	1.00s	0.00~60.00s	•	0xB02
Fb-03	PID controller feedback signal source	2	 0: keyboard number PID given 1: keyboard potentiometer given 2: Analog quantity Al1 given 3: Analog quantity Al2 given 4: Terminal pulse HDI setting 5: RS485 communication given 6: optional card 7: terminal selection 	•	0xB03
Fb-04	Feedback signal low-pass filter time	0.010s	0.000~6.000s	•	0xB04
Fb-05	Feedback signal gain	1.00	0.00~10.00	•	0xB05
Fb-06	Maximum range of feedback signal	100.0	0~100.0	•	0xB06
Fb-07	PID control selection	0100	Unit: feedback feature selection 0: positive characteristic 1: negative characteristic Tens: closed loop bypass keeps output 0: output is cleared when closed loop bypass 1: Output hold when closed loop bypass Hundreds place: alignment selection 0: Non-center alignment 1: Center alignment Thousands: Differential adjustment properties 0: Differentiate the deviation 1: Differentiate the feedback	0	0xB07
Fb-08	PID preset output	100.0%	0.0~100.0%	•	0xB08
Fb-09	PID preset output running	0.0s	0.0~6500.0s	•	0xB09
Fb-10	PID control deviation limit	0.0%	0.0~100.0%	•	0xB0A
Fb-11	Proportional gain P1	0.100	0.000~8.000	•	0xB0B
Fb-12	Integration time I1	1.0s	0.0~600.0s	•	0xB0C
Fb-13	Differential gain D1	0.000s	0.000~6.000s	•	0xB0D
Fb-14	Proportional gain P2	0.100	0.000~8.000	•	0xB0E
Fb-15	Integration time I2	1.0s	0.0~600.0s	•	0xB0F

Fb-16	Differential gain D2	0.000s	0.000~6.000s	•	0xB10
Fb-17	PID parameter switching conditions	0	 0: No switching 1: X terminal switching 2: Switch according to deviation 	•	0xB11
Fb-18	Low switching deviation	20.0%	0.0~100.0%	•	0xB12
Fb-19	High switching deviation	80.0%	0.0~100.0%	•	0xB13
Fb-20	Reserved				0xB14
Fb-21	Differential limiting	5.0%	0.0~100.0%	•	0xB15
Fb-22	PID output upper limit	100.0%	0.0~100.0%	•	0xB16
Fb-23	PID output lower limit	0.0%	0.0~[Fb-22]	•	0xB17
Fb-24	PID output filter time	0.0s	$0.000{\sim}6.000$ s	•	0xB18
Fb-25	Feedback disconnection	1.0s	0.0~120.0s	•	0xB19
Fb-26	Feedback disconnection action selection	0	 continue to run without failure Stop and report fault Continue to run, output alarm Run at current frequency and alarm 	•	0xB1A
Fb-27	Upper limit of wire break alarm	100.0%	0.0~100.0%	•	0xB1B
Fb-28	Lower limit of wire break alarm	0.0%	0.0~100.0%	•	0xB1C
Fb-29	Sleep selection	0	0: off 1: on	•	0xB1D
Fb-30	Sleep frequency	30.00Hz	0.00~50.00Hz	•	0xB1E
Fb-31	Sleep delay	3.0S	0.0~3600.0S	•	0xB1F
Fb-32	Wake deviation	5.0%	0.0~50.0%	•	0xB20
Fb-33	Wakeup delay	0.0S	0.0~60.0S	•	0xB21

Multi-stage speed, PLC function parameter group

Functi on code	Function code name	Factory default	Set value range and definition	Attribut es	Mailing addres s
FC-00	Multi-band frequency 1	10.00Hz	0.00 \sim maximum frequency	•	0xC00
FC-01	Multi-band frequency 2	20.00Hz	0.00 \sim maximum frequency	•	0xC01
FC-02	Multi-band frequency 3	30.00Hz	0.00 \sim maximum frequency	•	0xC02
FC-03	Multi-band frequency 4	40.00Hz	0.00 \sim maximum frequency	•	0xC03
FC-04	Multi-band frequency 5	50.00Hz	0.00 \sim maximum frequency	•	0xC04
FC-05	Multi-band frequency 6	40.00Hz	0.00 \sim maximum frequency	•	0xC05
FC-06	Multi-band frequency 7	30.00Hz	0.00 \sim maximum frequency	•	0xC06
FC-07	Multi-band frequency 8	20.00Hz	0.00 \sim maximum frequency	•	0xC07

FC-08	Multi-band frequency 9	10.00Hz	0.00 \sim maximum frequency	•	0xC08
FC-09	Multi-band frequency 10	20.00Hz	0.00 \sim maximum frequency	•	0xC09
FC-10	Multi-band frequency 11	30.00Hz	0.00 \sim maximum frequency	•	0xC0A
FC-11	Multi-band frequency 12	40.00Hz	0.00 \sim maximum frequency	•	0xC0B
FC-12	Multi-band frequency 13	50.00Hz	0.00 \sim maximum frequency	•	0xC0C
FC-13	Multi-band frequency 14	40.00Hz	0.00 \sim maximum frequency	•	0xC0D
FC-14	Multi-band frequency 15	30.00Hz	0.00 \sim maximum frequency	•	0xC0E
FC-15	Multi-frequency operation mode selection	0000	Units: circular mode 0: single cycle 1: continuous cycle 2: Keep the final value after a single cycle Ten digits: timing unit 0: second 1: minute 2: hour Hundreds: power-down storage 0: Do not store 1: Store Thousands: start mode 0: restart from the first stage 1: Re-run from the stage of shutdown 2: Continue to run with the remaining time of the shutdown phase	•	0xC0F
FC-16	Multi-frequency 1 running time	10.0	0.0∼6500.0(s/m/h)	•	0xC10
FC-17	Multi-frequency 2 running time	10.0	0.0∼6500.0(s/m/h)	•	0xC11
FC-18	Multi-frequency 3 running time	10.0	0.0∼6500.0(s/m/h)	•	0xC12
FC-19	Multi-frequency 4 running time	10.0	0.0∼6500.0(s/m/h)	•	0xC13
FC-20	Multi-frequency 5 running time	10.0	0.0∼6500.0(s/m/h)	•	0xC14
FC-21	Multi-frequency 6 running	10.0	0.0∼6500.0(s/m/h)	•	0xC15
FC-22	Multi-frequency 7 running time	10.0	0.0~6500.0(s/m/h)	•	0xC16
FC-23	Multi-frequency 8 running time	10.0	0.0~6500.0(s/m/h)	•	0xC17
FC-24	Multi-frequency 9 running	10.0	0.0~6500.0(s/m/h)	•	0xC18
-------	---------------------------------	------	-------------------	---	-------
FC-25	Multi-frequency 10 running time	10.0	0.0∼6500.0(s/m/h)	•	0xC19
FC-26	Multi-frequency 11 running time	10.0	0.0∼6500.0(s/m/h)	•	0xC1A
FC-27	Multi-frequency 12 running time	10.0	0.0∼6500.0(s/m/h)	•	0xC1B
FC-28	Multi-frequency 13 running time	10.0	0.0∼6500.0(s/m/h)	•	0xC1C
FC-29	Multi-frequency 14 running time	10.0	0.0∼6500.0(s/m/h)	•	0xC1D
FC-30	Multi-frequency 15 running time	10.0	0.0∼6500.0(s/m/h)	•	0xC1E

FC-31		0000		•	0xC1F
FC-32		0000		•	0xC20
FC-33		0000		•	0xC21
FC-34		0000		•	0xC22
FC-35		0000	Units: running direction of this segment	•	0xC23
FC-36		0000	0. Iorward 1: reverse Tens: the acceleration and deceleration	•	0xC24
FC-37	Multi-section frequency	0000	time	•	0xC25
FC-38	1-15 direction and	0000	0: acceleration and deceleration time 0	•	0xC26
FC-39	deceleration time	0000	1: Acceleration and deceleration time 1	•	0xC27
FC-40		0000	2: Acceleration and deceleration time 2	•	0xC28
FC-41		0000	3: Acceleration and deceleration time 3 Hundreds, Thousands: reserved	•	0xC29
FC-42		0000		•	0xC2A
FC-43		0000		•	0xC2B
FC-44		0000		•	0xC2C
FC-45		0000		•	0xC2D
FC-46~I	FC-48	Reserved			

Communication control function parameter group

Functi on code	Function code name	Factory default	Set value range and definition	Attribu tes	Mailing address
Fd-00	Master-slave choice	0	0: Slave 1: Master	0	0xD00
Fd-01	Mailing address	1	1~247	0	0xD01

Fd-02	Communication baud rate selection	3	0: 1200 bps 1: 2400 bps 2: 4800 bps 3: 9600 bps 4: 19200 bps 5: 38400 bps	0	0xD02
Fd-03	Modbus data format	0: (N, 8, 1) 1: (E, 8, 1) 2: (O, 8, 1) 3: (N, 8, 2) 4: (E, 8, 2) 5: (O, 8, 2)		0	0xD03
Fd-04	Communication ratio setting	1.00	0.00~5.00	•	0xD04
Fd-05	Communication response delay	0ms	0~500ms	•	0xD05
Fd-06	Communication timeout failure time	1.0s	0.1~100.0s	•	0xD06
Fd-07	Communication fault action selection	0	0: No detection 1: Alarm and free stop 2: Warning to continue running 3: Forced shutdown	•	0xD07
Fd-08	Transmission response processing	0	0: There is a response 1: No response	•	0xD08
Fd-09	Host sending selection	0031	Units: the first group to send frame selection 0: invalid 1: run command 2: given frequency 3: output frequency 4: upper limit frequency 5: given torque 6: output torque 7, 8: reserved 9: PID given A: PID feedback Ten digits: the second group sends the same frame as above Hundreds place: the third group sends the frame to choose as above Thousands: the fourth group sends the same frame as above	•	0xD09
Fd-10	RS485 communication port configuration	0	0: Modbus communication; 1: Other protocols	•	0xD0A

5.3 Terminal input function selection

0: No function	1: forward running	2: Reverse operation	3: Three-wire
			operation control
			(Xi)
4: Forward jog	5: reverse jog	6: Free parking	7: Emergency stop
8: Fault reset	9: external fault input	10: Increasing	11: Decreasing
		frequency (UP)	frequency (DW)
12: Clear UP / DW	13: Switch channel A to	14: Switch frequency	15: Switch
	channel B	channel to A	frequency channel
16: Multi-speed terminal 1	17: Multi-speed terminal 2	18: Multi-speed	19: Multi-speed
		terminal 3	terminal 4
20: PID control canceled	21: PID control suspended	22: PID feature	23: PID gain
		switching	switching
24: PID reference switching	25: PID given switch 2	26: PID reference	27: PID feedback
1		switching 3	switching 1
28: PID feedback switching	29: PID feedback switching	30: Program running	31: Program
2	3	(PLC) pause	operation (PLC)
32: acceleration and	33: acceleration and	34: Acceleration and	35: Swing
deceleration time terminal 1	deceleration time terminal 2	deceleration pause	frequency input
36: Swing frequency pause	37: Swing frequency reset	40: Timer trigger	41: Timer clear
		terminal	terminal
42: Counter clock input	43: Counter reset terminal	44: DC braking	45: Pre-excitation
		command	command terminal
46: Motor selection terminal	47: Operation pause	48: Command	49: Command
		channel switch to	channel switch to
		keyboard	terminal
50: Command channel	52: Operation prohibited	53: forward transfer	54: Reverse
switch to communication		prohibited	prohibition

5.4 Terminal output function selection

0 [.] No output	1: Inverter is running	2: The inverter is running	3: The inverter is running
		in reverse	forward

4: Fault trip alarm 1 (alarm during fault self-recovery)	5: Fault trip alarm 2 (no alarm during fault self-recovery)	6: external fault shutdown	7: inverter undervoltage	
8: The inverter is ready for operation	9: Output frequency level detection 1 (FDT1)	10: Output frequency level detection 2 (FDT2)	11: arrival at a given frequency	
12: Running at zero speed	13: Upper frequency reached	14: Lower limit frequency reached	15: Completion of the program running cycle	
16: Running completed in the program running phase	17: PID feedback exceeds the upper limit	18: PID feedback is lower than the lower limit	19: PID feedback sensor is disconnected	
21: The timer is up	22: The counter reaches the maximum value	23: Counter reaches the set value	24: Energy consumption braking	
25: PG feedback disconnected	26: Emergency stop	27: Load pre-alarm output 1	28: Load pre-alarm output 2	
29: Motor overload pre-alarm	30: RS485 given	Interpretation code is not re	eserved in the middle	

5.5 Monitoring code

By pressing the PRG key for more than 2 seconds, you enter the "C" parameter group. Check the current status of the inverter.

Function code number	Function code name	Factory default	Set value range and definition
C-00	Given frequency	0.01Hz	2100H
C-01	Output frequency	0.01Hz	2101H
C-02	Output current	0.1A	2102H
C-03	Bus voltage	0.1V	2103H
C-04	Output voltage	0.1V	2104H
C-05	Mechanical speed	1RPM	2105H
C-06	Input voltage	0.1V	2106H
C-07	Output Power	0.1%	2107H
C-08	Given torque	0.1%	2108H
C-09	Output torque	0.1%	2109H
C-10	PID given amount	0.1%	210CH
C-11	PID feedback	0.1%	210DH
C-12	Module temperature 1	0.1℃	210EH

C-13	Module temperature 2	0.1℃	210FH
C-14	Input terminal X is on	See input terminal status diagram	2110H
C-15	Output terminal Y is on	See output terminal status diagram	2111H
C-16	Analog AI1 input value	0.001V	2112H
C-17	Analog AI2 input value	0.001V/0.001mA	2113H
C-18	Pulse signal HDI input value	0.001kHz	2114H
C-19	Analog output AO1	0.01V	2115H
C-20	Analog output AO2	0.01V/0.01mA/0.01kHz	2116H
C-21	Counter count value		2117H
C-22	Running time of this power-on	0.1 hour	2118H
C-23	Cumulative running time of this machine	hour	2119H
C-24	Power factor angle	1°	211AH
C-25	Inverter power level	kW	211BH
C-26	Inverter rated voltage	V	211CH
C-27	Inverter rated current	А	211DH
C-28	Software version		211EH
C-29	PG feedback frequency	0.01Hz	211FH

5.6 Common faults and their treatment

Comm	Fault	Fault name	Troubleshoot	Solution
unicat	displa			
ion	у			
code				
1	E. SC	System	• The acceleration time is set	 Properly extend the acceleration
		abnormality	too short;	time;
			• The output of the inverter is	 Check the peripheral equipment,
			short-circuited between phases	and restart after troubleshooting;
			or to ground;	 Seek technical support from
			• The module is damaged;	manufacturers;
			Electromagnetic interference	 Check the wiring, grounding,
			Abrupt load current exceeds	shielding, etc.
			rated value	 Check the load or adjust the
				inverter parameters
	A.LIF	Input power	 Input power phase loss 	 Troubleshoot the lack of input
		failure		power
		warning		
4	E.oC1	Overflow	 The acceleration time is set too short; Start the rotating motor; 	 Properly extend the acceleration time; The motor stops or starts after acceleration.
		acceleration	The capacity of the inverter is too small.	 Select the inverter with matching
				capacity grade
5	E.oC2	Overcurrent during deceleration	 The deceleration time is set too short; Large potential energy load or load inertia; The capacity of the inverter is too small. 	 Properly extend the deceleration time; External braking resistor or braking unit; Use inverters with matching capacity levels.
6	E.oC3	Overcurrent at constant speed	Abrupt load;The grid voltage is low.	 Check the load change and eliminate it; Check the input power and eliminate the fault.

7	E.oU1	Overpressure during acceleration	 The power supply voltage fluctuation exceeds the limit; Start the rotating motor. 	 Detect grid voltage and eliminate faults; The motor stops or starts after speed tracking;
8	E.oU2	Overpressure during deceleration	 The deceleration time is set too short; The load potential energy or inertia is too large; The power supply voltage fluctuation exceeds the limit. 	 Properly extend the deceleration time; Increase the capacity of the inverter or add a braking unit; Check the input power and eliminate the fault.
9	E.oU3	Constant speed overvoltage	• The power supply voltage fluctuation exceeds the limit.	• Check the input power and eliminate the fault;
10	E.LU2	Bus undervoltage	 The power supply voltage is too low; There is a large inrush current in the power grid; The internal DC main contactor is not closed. 	 Check the input power and eliminate the fault; Improve the power supply system; Seek technical support from manufacturers.
11	E.oL1	Motor overload	 The grid voltage is low; Improper setting of motor overload protection coefficient; The motor is blocked or the load is too heavy; The general-purpose motor runs at low speed for a long time. 	 Check the input power; Use inverters with matching capacity levels; For long-term low-speed operation, select a dedicated motor. Speed regulation overload coefficient
12	E.oL2	Inverter overload	 The load is too heavy The acceleration time is set too short; Start the rotating motor; 	 Use inverters with matching capacity levels; Properly extend the acceleration time; The motor stops or starts after speed tracking;
13	E.ILF	Input phase loss	Abnormal input power;Abnormal internal circuit;	 Check the input power; Seek technical support from manufacturers.
14	E.oLF	Output phase loss	• The three-phase output of the inverter is out of phase.	Check the output voltage, current and motor wiring;

15	E.oH2	Rectifier overheating	 The ambient temperature is too high; The air duct is blocked or the fan is abnormal; The temperature detection circuit is faulty. 	 Make the operating environment of the inverter meet the specifications; Drain the air duct or replace the fan of the same model; Seek technical support from manufacturers.
16	E.oH1	Inverter overheating	 The ambient temperature is too high; The air duct is blocked or the fan is abnormal; The temperature detection circuit is faulty. 	 Make the operating environment of the inverter meet the specifications; Drain the air duct or replace the fan of the same model; Seek technical support from manufacturers.
17	E. EF	External fault	• External equipment failure protection action.	Check external equipment.
18	E.SE1	Communicati on failure	 Improper setting of baud rate; Broken communication connection; The communication format does not match the host computer. 	 Set the matching baud rate; Check the communication connection; Set the matching communication format.
19	E.HAL	Current detection fault	 Detect circuit failure; The motor phases are unbalanced. 	Seek technical support;Check the motor and wiring.
20	E.AT1	Motor static self-learning	 Motor detection time out; Start static detection during motor rotation; The capacity difference between the motor and the inverter is too large; The motor parameters are set incorrectly. 	 Check the motor connection; Test after the motor is stopped; Replace the inverter model; Set again according to the motor nameplate.
21	E.EEP	EEPROM failure	 Electromagnetic interference during storage; The EEPROM is damaged. 	 Re-enter and store; Seek technical support from manufacturers.
25	E.AT2	Motor dynamic self-learning	 Start detection during motor rotation; Motor with load detection; Motor detection time out; The capacity difference between the motor and the 	 Test after the motor is stopped; Disconnect the motor load and re-check; Check the motor connection; Replace the inverter model; Set again according to the motor

			inverter is too large;	nameplate.
			• The motor parameters are set	
			incorrectly.	
		Expansion		
27	E DC	card	Connection failure between	- Charly connection
21	E.FG	connection is	PG card and inverter	
		abnormal		
		Overpressure		Check the input power and
28	E.OU4	during	•The power supply voltage	eliminate the fault;
		shutdown	nucluation exceeds the limit.	 Seek technical support from manufacturers.
			PID feedback disconnection	
		PID	alarm upper limit	Confirm sensor status
29	E.PID	disconnection	Lower limit of PID feedback	Correct wiring
		fault	disconnection alarm	Confirm the setting value of Fb-27
		iddit	Feedback sensor failure or	and Fb-28
			poor wiring	
30	E.RSV	Reserved		

Chapter VI Regular Inspection and Maintenance

6.1 Inspection

The frequency converter is composed of semiconductor devices, electronic devices, and motion devices, and these devices have a service life. Due to the influence of environmental temperature, humidity, dust and vibration, it will cause the aging of the internal components of the inverter, resulting in the potential failure of the inverter or reducing the service life of the inverter. Therefore, it is necessary to carry out daily and regular maintenance and maintenance on the inverter.

• Daily inspection: In order to avoid damage to the inverter and shorten the service life, please confirm the following items daily.

Check item	С	Judgement standard
Input and output voltage	Check whether the power supply voltage meets the requirements and whether there is missing phase power supply phenomenon.	Refer to the nameplate requirements.
Operating	Whether the installation environment meets	Confirm the source and solve it
environment	the requirements.	properly
Cooling system	The working condition of the inverter's cooling fan.	No dirt or debris blocking the air duct
Motor	The motor works abnormally	Whether there are abnormal conditions of heat generation, abnormal noise and vibration.
Load condition	Whether the output current of the inverter is higher than the rated value of the motor or the inverter for a certain period of time.	Confirm whether there is an overload situation and confirm whether the inverter selection is correct.

• Periodic inspection: According to the use environment and working conditions, the frequency inverter shall be inspected regularly every 3 to 6 months.

Check item	Check item	Preventive solution
Motor	 Insulation resistance check; Whether the motor has abnormal vibration and abnormal noise. 	• Tighten mechanical and electrical connections and lubricate the motor shaft.
	• Whether the wires and connecting parts are	 Replace damaged wires;
Electrical	discolored, whether the insulation layer is	• Fasten loose terminals and replace
connections	damaged, cracked, discolored or aging;	damaged terminals;
	• Whether the connection terminal is worn,	• Measure the grounding resistance and

	damaged or loose;	tighten the corresponding grounding terminal.
Mechanical connection	Whether there is abnormal vibration and noise, and whether it is loose or not.	• Tighten, lubricate, and replace defective parts.
Semiconduct or device	 Whether it is contaminated with garbage and dust, and whether the appearance has changed significantly. 	• Clean the operating environment and replace damaged parts.
Electrolytic capacitor	 Whether there is leakage, discoloration, cracking, whether the safety valve is exposed, swollen, cracked or leaking. 	Replace damaged parts.
A printed circuit board	 Whether there is odor, discoloration, severe rust, and whether the connector is reliable. 	 Fasten the connection; Clean the printed circuit board or replace the damaged printed circuit board;
Cooling system	 Whether the cooling fan is damaged, dirty or blocked; Whether the air intake and exhaust are blocked or contaminated with foreign objects. 	 Clean operating environment; Replace damaged parts.
Keyboard	 Whether the keyboard is damaged or displayed incompletely. 	Replace damaged parts.

Warning

: Do not perform related work while the power is on. When performing related work, please cut off the power and confirm that the DC voltage of the main circuit has dropped to a safe level, and wait for 5 minutes before performing related work.

• Component replacement: Different types of components have different service life. The service life of parts is closely related to the environment and maintenance conditions used. Cooling fans and electrolytic capacitors are vulnerable parts. Perform daily inspection according to the following table. If there are any abnormalities, please replace them in time.

Part Name	Life cycle	Cause of damage	Part Name	Life cycle	Cause of damage
Fan	2~3 years	Bearing wear, blade aging	Electrolytic capacitor	4~5 years	The ambient temperature is high and the electrolyte evaporates

The replacement of other devices has very strict requirements on maintenance technology and product familiarity, and after replacement, it must be strictly tested before it can be put into use, so it is not recommended that users replace other internal devices. If you really need to replace it, please contact the agent where you purchased the product or our sales department.

6.2 Inverter storage

After purchasing the inverter, users must pay attention to temporary storage and long-term storage:

- •When storing, try to put it into the company's packing box according to the original packaging.
- •Long-term storage will cause the deterioration of the electrolytic capacitor. It must be ensured that it is energized once within 2 years, and the energization time is at least 5 hours. The input voltage must be slowly increased to the rated value with a voltage regulator.

Appendix: Modbus communication protocol

KV500 series inverters are equipped with RS485 communication interface as standard, and adopt the international standard Modbus communication protocol for master-slave communication. Users can implement centralized control (setting inverter control commands, operating frequency, related function code parameter modification, working status and fault information monitoring, etc.) through PC / PLC, host computer, etc. to adapt to specific application requirements.

Communication frame structure

The communication data format is as follows: the composition of the byte: including the start bit, 8 data bits, parity bit and stop bit.

Start	Ri+1	Bit2	Bit3	Bit/	Rit5	Bite	Bit7	Bit8	Check	Stop bit
bit	Ditt	DILZ	Dito	Dit	Dito	Dito	Diti	Dito	Digit	

The information of one frame must be transmitted in a continuous data stream. If the interval of more than 1.5 bytes before the end of the entire frame transmission, the receiving device will clear these incomplete information and mistakenly believe that the next byte is a new one. The address field part of the frame. Similarly, if the interval between the start of a new frame and the previous frame is less than 3.5 bytes, the receiving device will consider it to be the continuation of the previous frame. Due to the disorder of the frame, the final CRC check value is incorrect, resulting in communication error.

• Communication control parameter group address description:

Function Description	Address definition	Explanation of data meaning				
Communication given frequency	0x3000 or 0x2000	0 \sim 32000 corresponds to 0.00Hz \sim 320.00Hz			W/R	
Communication command setting	0x3001 or 0x2001	0000H: no command 0001H: forward running 0002H: Reverse operation 0003H: forward jog 0004H: reverse jog		0005H: Decelerate to stop 0006H: Free stop 0007H: Fault reset 0008H: Run prohibit command 0009H: Run allow command		W/R
		Bit0 Bit1	0: stop state 0: non-accelerate	d state	1: Running state 1: accelerated state	
Inverter status	0x3002 or 0x2002	Bit2	Bit2 0: Non-dece		state	R
		Bit3	0: forward 1: reverse 0: No fault 1: Inverter failure		1: reverse	
		Bit4			1: Inverter failure	
Inverter fault	0x3003 or 0x2003	Inverter o	current fault code (s	ee fault	code table)	R

code			
Communication given upper limit frequency	0x3004 or 0x2004	0 \sim 32000 corresponds to 0.00Hz \sim 320.00Hz	W/R
Communication torque setting	0x3005 or 0x2005	0 \sim 1000 corresponds to 0.0 \sim 100.0%	W/R
Torque control forward maximum frequency limit	0x3006 or 0x2006	0 \sim 1000 corresponds to 0.0 \sim 100.0%	W/R
Torque control reverse maximum frequency limit	0x3007 or 0x2007	0 \sim 1000 corresponds to 0.0 \sim 100.0%	W/R
Communication given PID setting value	0x3008 or 0x2008	0 \sim 1000 corresponds to 0.0 \sim 100.0%	W/R
Communication given PID feedback value	0x3009 or 0x2009	0 \sim 1000 corresponds to 0.0 \sim 100.0%	W/R
Voltage-frequenc y separation voltage value setting	0x300A or 0x200A	0 \sim 1000 corresponds to 0.0 \sim 100.0%	W/R
AO1 output	0x3021 or 0x2021	0-10000 corresponding output 0-10V, 0-20mA	R
AO2 output	0x3022 or 0x2022	0-10000 corresponding output 0-10V, 0-20mA, 0-50kHz	R

Note: For other function code addresses, please refer to the "Communication Address" column in the function parameter table. When using the write command (06H), if the most significant bit of the function code parameter address is 0, it will only be written into the inverter RAM, and it will not be stored when the power is off. Power-off storage. Such as F0-00 parameters: address 0x0000 is written to RAM, and address 0x1000 is written to EEPROM.

 The meaning of the error 	code of the slave	responding to abno	ormal information:
--	-------------------	--------------------	--------------------

Error code	Explanation	Error code	Explanation
1	Command code error	7	Reserved
3	CRC check error	8	Inverter is busy (EEPROM is being

			stored)
4	Illegal address	9	Parameter value exceeded
5	lliegal data	10	Reserved parameters cannot be changed
6	Parameters cannot be changed during operation	11	Error reading parameter bytes

Attachment: Double-line display operation keyboard size

