IDO-EVB3020 Linux Buildroot开发手册

- 1. 系统用户名及密码
- 2. 调试口使用
 - 2.1 调试串口
 - 2.2 ADB调试
- 3. 串口测试
 - 3.1 功能说明
 - 3.2 控电方法
 - 3.3 通信测试
- 4. 以太网

静态IP设置

- 5.WIFI使用
- 6. Bluetooth使用
- 7.4G
- 8. USB
 - 8.1 USB OTG
 - 8.2 USB HOST
- 9. MIPI CSI Camera
- 10. CAN
- 11. DO
- 12.喇叭/耳机
- 13.模拟MIC
- 14. ADC 按键
- 15. ADC IN

IDO-EVB3020 Linux Buildroot系统使用说明

深圳触觉智能科技有限公司

www.industio.cn

文档修订历史

版本	修订内容	修订	审核	日期
V1.0	创建文档	FuYingz he		2023/02/ 24

1. 系统用户名及密码

用户	密码
root	rockchip

2. 调试口使用

2.1 调试串口

调试串口为 TTL 电平, 主板接口为 MX1.25 接线端子, 使用 USB 转串口模块连接 PC 调试终端。 串口参数: 波特率 1500000、数据位 8bit、 无校验位、 停止位 1bit。

Baud rate:	1500000	\sim	Flow control
<u>D</u> ata bits:	8	~	DTR/DSR
Parity:	None	~	
Stop bits:	1	~	

2.2 ADB调试

上图橙色框内的USB接口为支持OTG模式切换,在系统上电前,使用双公头 USB 数据线连接主板和 PC 端的USB接口,在PC终端识别到 ADB 设备,即可使用 adb shell 调试。

Bash

- 1 #查看是否有adb设备
- 2 adb devices
- 3 #通过adb进入系统
- 4 adb shell

•

		adb.exe devices		
List of devices	attached			
329f1a2a423513e	f dev	ice		
		>adb.exe shell		
<pre>Lroot@px30_64:/.</pre>]# 1s			
bin	lib	mnt	root	timestamp
busybox.config	lib64	oem	run	tmp
data	linuxrc	opt	sbin	udisk
dev	lost+found	ov5648_default_default.xml.bin	sdcard	userdata
etc	media	proc	sys	usr
init	misc	rockchip_test	system	var
[root@px30 64:/]#			

3. 串口测试

3.1 功能说明

开发共有四路RS232和两路RS485,均可通过修改硬件贴片变更为TTL电平,接口设备节点如下表所示:

序号	接口位置	电平类型	串口设备节点
1	J19	RS232	/dev/ttyS0
2	J15	RS232	/dev/ttyS1
3	J18	RS232	/dev/ttyS4
4	J16	RS232	/dev/ttyS5

5	J14	RS485	/dev/ttyS3
6	J13	RS485	/dev/ttyS2 (默认此接口不开启,配置为调试串口)

3.2 控电方法

其中RS485接口可以通过软件控制VCC供电,供电接口如下所示:

序号	接口位置	控电节点
1	J13	/sys/class/leds/rs485_vout1/brightness
2	J14	/sys/class/leds/rs485_vout2/brightness

以J13端口的VCC供电控制为例,控制方法如下

•		Bash
1 2 3 4	#断电 echo 0 > /sys/class/leds/rs485_vout1/brightness #开启 echo 1 > /sys/class/leds/rs485_vout1/brightness	

3.3 通信测试

串口均可以使用microcom工具进行测试,使用microcom 打开/dev/ttyS0,并设置波特率为115200。

•		Bash
1	microcom -s 115200 /dev/ttyS0	

[root@px30_64:/]# microcom -s 115200 /dev/ttyS0 [84.841724] of_dma_request_slave_channel: dma-names property of node '/serial@ff030000' missing or empty [84.842616] ttyS0 - failed to request DMA, use interrupt mode

当按下键盘时,串口会发送对应的字符,而接收的内容会显示在终端。Ctrl+x键停止测试。

4. 以太网

主板具有一路自适应 10/100Mbps 以太网接口。

网络设备节点: eth0

IP设置方式:默认IP地址分配方式为 dhcp,只需要将以太网接口连接路由器即可为主板动态分配 IP 地址。

```
[root@px30_64:/]# ifconfig eth0
eth0 Link encap:Ethernet HWaddr 56:E0:64:9C:A7:11
UP BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:4 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:603 (603.0 B)
Interrupt:29
```

静态IP设置

修改/etc/network/interfaces,在文件中添加如下内容

```
Bash
     # interface file auto-generated by buildroot
 1
 2
 3
     auto lo
     iface lo inet loopback
 4
 5
 6
    auto eth0
7
     iface eth0 inet static
     address 192.168.0.234
8
     netmask 255.255.255.0
9
10
     gateway 192.168.0.1
     dns-nameservers 114.114.114.114
11
```

重启系统或者重启network服务,即可让配置生效

Bash

5.WIFI使用

主板板载USB WiFi 模块为RTL8723DU,使用WiFi时需要连接好WiFi天线。

网络设备节点: wlan0

系统共有两个与WIFI相关的启动服务,其中/etc/init.d/S36load_wifi_modules用于挂载WIFI驱动,/etc/init.d/S80wifireconnect用于WIFI联网。修改/userdata/cfg/wpa_supplicant.conf,填写正

确的热点账号和密码

•		Bash
1 2 3 4 5	<pre># cat /userdata/cfg/wpa_supplicant.conf ctrl_interface=/var/run/wpa_supplicant ap_scan=1 update_config=1</pre>	
6 = 7	network={	
8	psk="12345678"	
9	key_mgmt=WPA-PSK	
10	}	

重启后, /etc/init.d/S80wifireconnect自启动程序将会连接热点。

[root@p>	x30_64:/]# ifconfig wlan0
wlan0	Link encap:Ethernet HWaddr F0:B0:40:ED:34:CB
	inet addr:192.168.1.187 Bcast:192.168.1.255 Mask:255.255.255.0
	inet6 addr: fe80::d8dd:332d:a365:63ec/64 Scope:Link
	UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
	RX packets:30 errors:0 dropped:0 overruns:0 frame:0
	TX packets:27 errors:0 dropped:0 overruns:0 carrier:0
	collisions:0 txqueuelen:1000
	RX bytes:6202 (6.0 KiB) TX bytes:3255 (3.1 KiB)

6. Bluetooth使用

执行/usr/bin/bt_init.sh脚本,开启蓝牙供电并加载蓝牙驱动,蓝牙功能开启后,将产生hci0节点。

使用hcitool测试蓝牙扫描功能

•		Bash
1	hcitool scan	

[root@px30_64:/]# hcitool	scan
Scanning	
<pre>[767.194543] rtk_btcoex:</pre>	hci (periodic)inq start
<pre>[777.438990] rtk_btcoex:</pre>	inquiry complete
38:F9:D3:7A:40:18	JiangLaiMBP
40:79:72:46:D0:27	SOAIY SR10
38:00:25:C4:CD:B2	LAPTOP-7MP4TL0F
B0:E2:35:0D:4A:13	Redmi 9A
50:A0:09:67:AF:BE	MTTV-7AFBF

7.4G

系统默认适配了 EC20 4G模块,支持自动拨号上网。使用 4G 功能前,需要先在板载 MINI PCI-E 接口 插入 EC20 模块,在卡槽插入 SIM 卡,并连接好 4G 天线以保证信号的稳定。

系统上电,开机自启动程序检测到有EC20插上之后执行quectel-CM进行拨号,拨号成功后wwan0将会分 配到ip地址。

8. USB 8.1 USB OTG

当 OTG 接口在上电时已使用 USB 数据线连接 PC 端的 USB 口,此接口会自动切换为 Device 模式,在 此模式下可通过 ADB 的方式来调试主板。当USB OTG 接口没有链接USB数据线或连接U盘设备时,开始 自动切换为 Host 模式。USB OTG 执行应用层调用写设备节点的方式控制接口的 Device 和 Host 模 式,设置方法如下:

8.2 USB HOST

主板共有5路USB HOST 2.0接口, 启动一路为Type A 接口, 另外四路为 PH2.0-4 端子。支持挂载U 盘, USB摄像头、USB鼠标等标准USB设备。

主板每一路USB HOST均可通过软件控制接口的供电,接口对应列表如下:

序号	位置	接口
1	TYPE-A	/sys/class/leds/usb1_pwr/brightness
2	J5	/sys/class/leds/usb2_pwr/brightness
3	JЗ	/sys/class/leds/usb3_pwr/brightness
4	J4	/sys/class/leds/usb4_pwr/brightness
5	J6	/sys/class/leds/usb5_pwr/brightness

以Type A接口USB HOST 供电控制为例,控制方法如下:

•		Bash
1 2 3 4	<pre>#开电 echo 1 > /sys/class/leds/usb1_pwr/brightness #断电 echo 0 > /sys/class/leds/usb1_pwr/brightness</pre>	

9. MIPI CSI Camera

统默认支持OV5648 MIPI摄像头模组,接口位置如上图所示。 摄像头节点为: /dev/video0 可使用qcamera 软件打开摄像头。

10. CAN

主板使用 MCP2515-I IC实现 SPI转CAN,在使用之前先确认主板硬件电路是否贴有此MCP2515和CAN 收发器芯片,芯片位置如上图所示。

默认 can0 接口状态为 down, 需要设置 can 参数并执行 up 操作后才能执行收发。测试时可 将主板的 can 接口与另外一块主板 can 接口互连, 或者连接 USB 转 can 工具, 收发双方 设置相同的波特率等参数来测试接口功能。

关闭

Bash ifconfig can0 down 1

设置参数,波特率 125000 (最大支持 1Mbps)

开启

•		Bash
1	ifconfig can0 up	

接收

•

1

candump can0

发送

•		Bash
1	cansend can0 5A1#1122334455667788	

PC端使用CANTest软件+USB转CAN模块,实现CAN数据的收发。

CANTest	t - [USBCA	N1 设备:0 通	道:0]					—		×
选择设备	F 帧ID显示	示方式:十六试	性制 ▼格式: 『	实ID(ID靠右对	(齐) 🔻		〒 🔢 🦓 滾动 🕖	記示帧数 🕖	Langua	ge•
USBCAN1	设备:0 通道:	0 ×								₫ Þ ×
4. 滤波设置	影启动 3	。	团 🛸定位 号 清	空 🔒 保存 💼	设备操作•	2 接收时间标	示识• 😋 隐藏发送帧 🏅	多显示发送帧	t 🧆dbc	
序号	传输方向	时间标识	帧ID	帧格式	帧类型	数据长度	数据(HEX)			^
00000000	发送	19:56:3	0x00000000	数据帧	标准帧	0x08	00 01 02 03 04 05	06 07		
00000001	发送	19:56:3	0x00000000	数据帧	标准帧	0x08	00 01 02 03 04 05	06 07		
0000002	接收	19:56:5	0x000005a1	数据帧	标准帧	0x08	11 22 33 44 55 66	77 88		
0000003	接收	19:56:5	0x000005a1	数据帧	标准帧	0x08	11 22 33 44 55 66	77 88		_
基本操作 发送方:	式:「正常发	t送 <u></u> _	● 每次发送单	Long C :	每次发送 10) 帧	厂 帧ID每发送一	帧递增		
帧类	型:标准帧	ţ <u>-</u>	帧ID (HEX)	: 00000000	- 数据(HEX): 00 01 02	03 04 05 06 07	发送		
帧格	式: 数据帧	5 💌	发送次数	: 1	每次》	发送间隔(ms)	: 0	停止		
基本操作	高级操作							1		
			发	送耗时(s): 0.0	02 发	送 () () () () () () () () () (接收帧数:	2	清空	计数

11. DO

开发DO接口如上图所示,接口定义见下表:

Bash

序号	IO	控制节点
1	VCC 3.3V	3.3V供电
2	GND	系统地
3 ~ 14	DO1 –DO11	/sys/class/leds/do1/brightn ess ~ /sys/class/leds/do11/brightn ess

以DO1为例,控制DO1输出高低电平的方法如下:

•		Bash
1 2 3 4	<pre>#输出高电平 echo 1 > /sys/class/leds/do1/brightness #输出低电平 echo 0 > /sys/class/leds/do1/brightness</pre>	

12.喇叭/耳机

喇叭和耳机接口位置如上图所示 音频播放测试

Bash
1 aplay music.wav

13.模拟MIC

录音测试

Bash
 arecord -Dhw:0,0 -c 2 -d 5 -r 44100 -f S16_LE ./record.wav

14. ADC 按键

ADC按键在系统启动后可作为普通按键使用。 设备节点:/dev/input/event2 键值:KEY_VOLUMEUP

15. ADC IN

主板引出两路10bit有效位的数模转化器,参考电源为1.8V,读取接口如下

序号	位置	接口
1	红色	cat /sys/bus/iio/devices/iio\:device0/in_voltage0_raw
2	黄色	cat /sys/bus/iio/devices/iio\:device0/in_voltage1_raw