IDO-EVB3020 Ubuntu系统使用手册

调试

串口调试

ADB调试

SSH调试

串口测试

CAN测试

WIFI使用

蓝牙使用

以太网使用

静态IP设置

4G使用

摄像头使用

10.1 测试

10.1.1 测试摄像头是否存在

10.1.2抓取视频流

U盘

USB OTG

USB HOST

SD卡

按键

ADC

ADC值读取

ADC电压转换关系

时间设置

RTC时间读取和同步

NTP时间同步

时区

查看时区

设置时区

音频

Lineout

耳机

录音

打开mic通道

录音

播放录音

显示屏

显示屏接口说明

显示设置

屏幕背光亮度设置

IDO-EVB3020 Ubuntu 系统使用手册

深圳触觉智能科技有限公司

www.industio.cn

文档修订历史

版本	修订内容	修订	审核	日期
V1.0	1、创建文档	刘崇凯		2023/3/24

调试

IDO-EVB3020开发板支持串口调试、ADB调试和远程SSH调试。

串口调试

串口调试接口位于J4端口,见下图。请使用配套的usb串口调试工具。

为TTL电平,通信参数为15000008N1。

ADB调试

上图红色框内的USB接口为支持OTG模式切换,使用双公头 USB 数据线连接开发板和 PC 端的 USB接口,在PC终端识别到 ADB 设备,即可使用 adb shell 调试。

SSH调试

SSH登录账号密码为: ido @ 123456。

串口测试

串口接口位置及引脚定义如上图所示,设备节点列表如下:

序号	接口位置	电平	串口设备节点
1	J19	RS232	/dev/ttyS0
2	J15	RS232	/dev/ttyS1

3	J18	RS232	/dev/ttyS4
4	J16	RS232	/dev/ttyS5
5	J14	RS485	/dev/ttyS3
6	J13	RS485	/dev/ttyS2 (默认此接口不开启,配置为调试串口)

其中RS485接口可以通过软件控制VCC供电,供电接口如下所示:

序号	接口位置	控电节点
1	J13	/sys/class/leds/rs485_vout1/brightness
2	J14	/sys/class/leds/rs485_vout2/brightness

以J13端口的VCC供电控制为例,控制方法如下

■ Bash
 #断电
 echo 0 > /sys/class/leds/rs485_vout1/brightness
 #开启
 echo 1 > /sys/class/leds/rs485_vout1/brightness

使用工具microcom,可以进行发送和接收测试。 需要先安装microcom工具

Bash \mathbf{v} 1 sudo apt-get update 2 sudo apt-get install microcom Plain Text • root@ido:~# microcom -s 115200 -P /dev/ttyS0 1 2 44.730195] of_dma_request_slave_channel: dma-names property of node '/s ſ erial@fdd50000' missing or empty 3 connected to /dev/ttyS0 4 Escape character: Ctrl-\ 5 Type the escape character to get to the prompt. 6 fjskdfjsdfjsdklfjdsfdsdffdfdsfsdfd

短接TX-RX或者接上USB转串口工具。 按下键盘,将发送对应的字符;而接收的内容,会显示在终端。

CAN测试

开发板使用 MCP2515–I IC实现 SPI转CAN,在使用之前先确认开发板硬件电路是否贴有此MCP2515和 CAN收发器芯片,芯片位置如上图所示。

默认 can0 接口状态为 down, 需要设置 can 参数并执行 up 操作后才能执行收发。测试时可 将开发板 的 can 接口与另外一块开发板 can 接口互连,或者连接 USB 转 can 工具,收发双方 设置相同的波特 率等参数来测试接口功能。

CAN接口测试方法如下:

```
Bash
```

```
#关闭can0设备
1
2
    ip link set can0 down
3
4
    #设置仲裁段1M波特率,数据段3M波特率
5
    ip link set can0 type can bitrate 1000000 dbitrate 3000000 fd on
6
7
   #打印can0信息
8
   ip -details link show can0
9
10
    #启动can0
11
    ip link set can0 up
12
   #执行candump, 阻塞等待can0接收
13
14
    candump can0
15
16
   #canfd格式发送
   cansend can0 123##1DEADBEEF
17
18
   #can格式发送
19
20 cansend can0 123#1122334455667788
```

WIFI使用

开发板板载USB WiFi 模块为RTL8723DU。 网络设备节点:wlan0 联网方法:Ubuntu-desktop系统可在界面上配置SSID和密码连接附近的WiFi路由。

在Ubuntu系统桌面连接wifi热点:

鼠标右键右下角网口图标,弹出wifi框,点击想要连接的热点。

			Active connection(s)	
			Wired connection 1	
			Tiaomi_7FA5	
			Wi-Fi network(s)	
			AWP	1
			AWP	
			wp_guest	
			wp_guest	11
			ChinaNet-21EA	
			ChinaNet-21EA	
			Tactory-test	
			Tactory-test	
Sec.2			Industio_2.4	
			Industro_2.4	
			Khown connection()	
			Wired connection 1	
			Automi_//AS	_
×	*			
الم				
-	Abc			
	123			
Ļ				
) 🖭 🕄 🗔	🕽 음 24 Mar 6:57	

Password is needed for connection to 'Industio_2.4':	Password is needed for connection to 'Industio_2.4':	
✓ OK X Cancel		
✓ OK × Cancel		

这里我们可以通过虚拟键盘,进行输入密码。

点击上图图标会弹出虚拟键盘。

用户命令行连接wifi

修改wifi配置文件:

•		Bash
1	<pre>root@ido:~#vi /etc/wpa_supplicant/wpa_supplicant.conf</pre>	

连接wifi:

•	Bas	sh
1	<pre>root@ido:~#vi wpa_supplicant -D nl80211 -i wlan0 -c /etc/wpa_supplicant</pre>	t/wpa
	_supplicant.conf —B &	

蓝牙使用

开发板板载USB WiFi+蓝牙二合一模块RTL8723DU

设备节点:hci0

蓝牙标准: 蓝牙4.2双模

连接方法:Ubuntu系统可在界面上可以搜索附近的蓝牙并连接,

在Ubuntu系统桌面连接蓝牙:

鼠标右键点击右下角蓝牙图标,弹出选项框后,点击"Devices"

والقصر والوار	
	Turn Bluetooth Off
	Make Discoverable
	Set Up New Device
	Send Files to Device
	Recent Connections
	Devices
	Adapters
	Local Services
	Plugins
	Help
	Exit
📄 🐠 🎴 🕻	24 Mar 6:58 📃

弹出蓝牙搜索界面。

以太网使用

开发板具有一路自适应 10/100Mbps 以太网接口。

网络设备节点: eth0

IP设置方式:默认IP地址分配方式为 dhcp,只需要将以太网接口连接路由器即可为开发板动态分配 IP 地址。

静态IP设置

以eth0设置静态IP地址为例,修改/etc/network/interfaces,在文件中添加如下内容

•		Bash
1	auto lo	
2	iface lo inet loopback	
3		
4	auto eth0	
5	iface eth0 inet static	
6	address 192.168.0.234	
7	netmask 255.255.255.0	
8	gateway 192.168.0.1	
9	dns-nameservers 114.114.114.114	

其中, dns-nameservers一项为默认dns。

4G使用

IDO-EVB3568-V1 默认适配EC20模块,系统中已经安装了对应的拨号上网服务。

1 /lib/systemd/system/ec20.service

正常拨号成功后,wwan0将会分配到ip地址,此时可以测试是否能够正常ping通外网。

摄像头使用

系统默认支持OV5648 MIPI摄像头模组,接口位置如上图所示。

摄像头节点为: /dev/video0

摄像头可以使用系统自带的软件Test camera打开摄像头测试。软件的位置如下图所示:

点开软件输入password: 123456

10.1 测试

10.1.1 测试摄像头是否存在

```
Shell
```

```
root@ido:~# media-ctl -p -d /dev/media0
 1
     Media controller API version 0.1.0
 2
 3
 4
     Media device information
 5
 6
    driver
                     rkisp1
7
    model
                      rkisp1
    serial
8
    bus info
9
    hw revision
10
                     0x0
    driver version 0.0.0
11
12
13
    Device topology
     - entity 1: rkisp1-isp-subdev (4 pads, 7 links)
14
15
                 type V4L2 subdev subtype Unknown flags 0
                 device node name /dev/v4l-subdev0
16
17
             pad0: Sink
18 -
                      [fmt:SBGGR10 1X10/2592x1944 field:none
                      crop.bounds:(0,0)/2592x1944
19
20
                      crop:(0,0)/2592x1944]
                     <- "rkisp1 dmapath":0 []</pre>
21
22 -
                     <- "rockchip-mipi-dphy-rx":1 [ENABLED]</pre>
23
             pad1: Sink
24 -
                     <- "rkisp1-input-params":0 [ENABLED]</pre>
25
             pad2: Source
26 -
                      [fmt:YUYV8 2X8/2592x1944 field:none
27
                      crop.bounds:(0,0)/2592x1944
28
                      crop:(0,0)/2592x1944]
29 -
                     -> "rkisp1 selfpath":0 [ENABLED]
                     -> "rkisp1_mainpath":0 [ENABLED]
30 -
                     -> "rkisp1_rawpath":0 [ENABLED]
31 -
32
             pad3: Source
33 -
                     -> "rkisp1-statistics":0 [ENABLED]
34
35
     - entity 2: rkisp1_mainpath (1 pad, 1 link)
                 type Node subtype V4L flags 0
36
37
                 device node name /dev/video0
38
             pad0: Sink
39 -
                     <- "rkisp1-isp-subdev":2 [ENABLED]
40
     - entity 3: rkisp1_selfpath (1 pad, 1 link)
41
42
                 type Node subtype V4L flags 0
```

结果显示m00_b_ov5648, 说明摄像头存在, 最高分辨率支持2592x1944。

10.1.2抓取视频流

使用v4l2-ctl工具可以抓取摄像头的视频数据流。

Shell

```
root@ido:~# v4l2-ctl --verbose -d /dev/video0 --set-fmt-video=width=1920,h
 1
     eight=1080,pixelformat='NV12' --stream-mmap=4 --set-selection=target=crop,
     flags=0,top=0,left=0,width=1920,height=1080 --stream-to=./out.yuv
2
    VIDIOC QUERYCAP: ok
3
    VIDIOC_G_FMT: ok
4
    VIDIOC S FMT: ok
    Format Video Capture Multiplanar:
5
 6
             Width/Height
                              : 1920/1080
 7
             Pixel Format
                               : 'NV12' (Y/CbCr 4:2:0)
8
             Field
                               : None
9
            Number of planes : 1
10
             Flags
             Colorspace
                              : Default
11
             Transfer Function : Default
12
13
             YCbCr/HSV Encoding: Default
             Ouantization
                            : Full Range
14
15
             Plane 0
                               5
16
                Bytes per Line : 1920
                Size Image
                              : 3110400
17
18
    VIDIOC G SELECTION: ok
19
    VIDIOC_S_SELECTION: ok
20
                     VIDIOC_REQBUFS returned 0 (Success)
21
                     VIDIOC QUERYBUF returned 0 (Success)
22
                     VIDIOC QUERYBUF returned 0 (Success)
23
                     VIDIOC QUERYBUF returned 0 (Success)
24
                     VIDIOC QUERYBUF returned 0 (Success)
25
                     VIDIOC QBUF returned 0 (Success)
26
                     VIDIOC QBUF returned (Success)
27
                     VIDIOC_QBUF returned 0 (Success)
                     VIDIOC QBUF returned 0 (Success)
28
                     VIDIOC STREAMON returned (Success)
29
30
     cap dqbuf: 0 seq:
                           1 bytesused: 3110400 ts: 1384.549991 (ts-monotoni
     c, ts-src-eof)
     cap dqbuf: 1 seq:
31
                            2 bytesused: 3110400 ts: 1384.616490 delta: 66.499
     ms (ts-monotonic, ts-src-eof)
     cap dqbuf: 2 seq:
32
                            3 bytesused: 3110400 ts: 1384.682975 delta: 66.485
     ms (ts-monotonic, ts-src-eof)
     cap dqbuf: 3 seq:
                           4 bytesused: 3110400 ts: 1384.749486 delta: 66.511
33
    ms (ts-monotonic, ts-src-eof)
34
     cap dqbuf: 0 seq:
                           5 bytesused: 3110400 ts: 1384.816022 delta: 66.536
     ms fps: 15.04 (ts-monotonic, ts-src-eof)
35
     cap dqbuf: 1 seq: 6 bytesused: 3110400 ts: 1384.882509 delta: 66.487
    ms fps: 15.04 (ts-monotonic, ts-src-eof)
     cap dqbuf: 2 seq:
                          7 bytesused: 3110400 ts: 1384.949025 delta: 66.516
36
     ms fps: 15.04 (ts-monotonic, ts-src-eof)
```

```
37
     cap dqbuf: 3 seq: 8 bytesused: 3110400 ts: 1385.015545 delta: 66.520
     ms fps: 15.04 (ts-monotonic, ts-src-eof)
38
     cap dqbuf: 0 seq:
                          9 bytesused: 3110400 ts: 1385.082051 delta: 66.506
    ms fps: 15.04 (ts-monotonic, ts-src-eof)
39
                           10 bytesused: 3110400 ts: 1385.148567 delta: 66.516
     cap dqbuf: 1 seq:
    ms fps: 15.04 (ts-monotonic, ts-src-eof)
40
     cap dqbuf: 2 seq:
                           11 bytesused: 3110400 ts: 1385.215079 delta: 66.512
    ms fps: 15.04 (ts-monotonic, ts-src-eof)
41
                           12 bytesused: 3110400 ts: 1385.281594 delta: 66.515
     cap dqbuf: 3 seq:
    ms fps: 15.04 (ts-monotonic, ts-src-eof)
42
     cap dqbuf: 0 seq:
                           13 bytesused: 3110400 ts: 1385.348115 delta: 66.521
     ms fps: 15.04 (ts-monotonic, ts-src-eof)
43
                           14 bytesused: 3110400 ts: 1385.414669 delta: 66.554
     cap dqbuf: 1 seq:
     ms fps: 15.03 (ts-monotonic, ts-src-eof)
44
     cap dqbuf: 2 seq:
                           15 bytesused: 3110400 ts: 1385.481133 delta: 66.464
    ms fps: 15.04 (ts-monotonic, ts-src-eof)
45
                           16 bytesused: 3110400 ts: 1385.547656 delta: 66.523
     cap dqbuf: 3 seq:
    ms fps: 15.04 (ts-monotonic, ts-src-eof)
46
     cap dqbuf: 0 seq:
                           17 bytesused: 3110400 ts: 1385.614172 delta: 66.516
    ms fps: 15.04 (ts-monotonic, ts-src-eof)
47
     cap dqbuf: 1 seq:
                           18 bytesused: 3110400 ts: 1385.680680 delta: 66.508
    ms fps: 15.04 (ts-monotonic, ts-src-eof)
48
     cap dqbuf: 2 seq:
                           19 bytesused: 3110400 ts: 1385.747241 delta: 66.561
    ms fps: 15.03 (ts-monotonic, ts-src-eof)
49
     cap dqbuf: 3 seq:
                          20 bytesused: 3110400 ts: 1385.813714 delta: 66.473
     ms fps: 15.03 (ts-monotonic, ts-src-eof)
50
     ^C
```

按Ctrl–C停止抓取,视频流保存到文件out.yuv。 使用ffplay工具播放抓取的视频流:

```
root@ido:~# ffplay -f rawvideo -video_size 1920x1080 -pix_fmt nv12 ./out.y
1
    uv
2
    ffplay version 4.2.4-1ubuntu1.0firefly1 Copyright (c) 2003-2020 the FFmpe
    q developers
3
      built with gcc 9 (Ubuntu 9.3.0-17ubuntu1~20.04)
4
      configuration: --prefix=/usr --extra-version=1ubuntu1.0firefly1 --toolch
    ain=hardened --libdir=/usr/lib/aarch64-linux-gnu --incdir=/usr/include/aar
    ch64-linux-gnu --arch=arm64 --enable-gpl --disable-stripping --enable-avre
    sample --disable-filter=resample --enable-avisynth --enable-gnutls --enabl
    e-ladspa --enable-libaom --enable-libass --enable-libbluray --enable-libbs
    2b --enable-libcaca --enable-libcdio --enable-libcodec2 --enable-libflite
    --enable-libfontconfig --enable-libfreetype --enable-libfribidi --enable-l
    ibgme --enable-libgsm --enable-libjack --enable-libmp3lame --enable-libmys
    ofa --enable-libopenjpeg --enable-libopenmpt --enable-libopus --enable-lib
    pulse --enable-librsvg --enable-librubberband --enable-libshine --enable-l
    ibsnappy --enable-libsoxr --enable-libspeex --enable-libssh --enable-libth
    eora --enable-libtwolame --enable-libvidstab --enable-libvorbis --enable-l
    ibvpx --enable-libwavpack --enable-libwebp --enable-libx265 --enable-libxm
    l2 --enable-libxvid --enable-libzmq --enable-libzvbi --enable-lv2 --enable
    -omx --enable-openal --enable-opencl --enable-opengl --enable-sdl2 --enabl
    e-libdc1394 --enable-libdrm --enable-libiec61883 --enable-chromaprint --en
    able-frei0r --enable-libx264 --enable-libdrm --enable-librga --enable-rkmp
    p --enable-version3 --disable-libopenh264 --disable-vaapi --disable-vdpau
    --disable-decoder=h264 v4l2m2m --disable-decoder=vp8 v4l2m2m --disable-dec
    oder=mpeg2 v4l2m2m --disable-decoder=mpeg4 v4l2m2m --disable-muxer='ac3,ea
    c3,mlp,truehd' --disable-encoder='ac3_fixed,ac3,mlp,spdif,truehd' --disabl
    e-demuxer='ac3,eac3,mlp,truehd,dts,dtshd' --disable-parser='aac,ac3,mlp' -
    -disable-decoder='ac3,eac3,mlp,dolby_e' --enable-shared --disable-doc
                     56. 31.100 / 56. 31.100
      libavutil
      libavcodec
                     58. 54.100 / 58. 54.100
      libavformat
                     58. 29.100 / 58. 29.100
      libavdevice
                         8.100 / 58. 8.100
                     58.
      libavfilter
                     7. 57.100 / 7. 57.100
                              0 / 4.
      libavresample
                      4.
                         0.
                                      0.
                                          0
                      5.
      libswscale
                         5.100 / 5.
                                      5.100
      libswresample
                      3.
                         5.100 / 3. 5.100
      libpostproc
                     55.
                          5.100 / 55.
                                       5.100
    Option -pix fmt is deprecated, use -pixel format.
    libGL error: failed to create dri screen
```

- 16 libGL error: failed to load driver: rockchip
- 17 libGL error: failed to create dri screen

•

5

6

7

8

9

10

11

12

13

14 15

- 18 libGL error: failed to load driver: rockchip
- 19 [rawvideo @ 0x7f3c000ba0] Estimating duration from bitrate, this may be in accurate
- Input #0, rawvideo, from './out.yuv': 20

21 Duration: 00:00:04.00, start: 0.000000, bitrate: 622075 kb/s
22 Stream #0:0: Video: rawvideo (NV12 / 0x3231564E), nv12, 1920x1080, 622
23 080 kb/s, 25 tbr, 25 tbn, 25 tbc

U盘

USB OTG

当 OTG 接口在上电时已使用 USB 数据线连接 PC 端的 USB 口,此接口会自动切换为 Device 模式,在此模式下可通过 ADB 的方式来调试开发板。当USB OTG 接口没有链接USB数据线或连接U盘设备时,开始自动切换为 Host 模式。USB OTG 执行应用层调用写设备节点的方式控制接口的 Device 和 Host 模式,设置方法如下:

Bash

- •
- 1 #设置为Host模式
- 2 echo HOST > /dev/otg_mode
- 3 #设置为Device模式
- 4 echo DEVICE > /dev/otg_mode

USB HOST

开发板共有5路USB HOST 2.0接口, 启动一路为Type A 接口, 另外四路为 PH2.0-4 端子。支持挂载 U盘, USB摄像头、USB鼠标等标准USB设备。

开发板每一路USB HOST均可通过软件控制接口的供电,接口对应列表如下:

序号	位置	接口
1	TYPE-A	/sys/class/leds/usb1_pwr/brightness
2	J5	/sys/class/leds/usb2_pwr/brightness
3	JЗ	/sys/class/leds/usb3_pwr/brightness
4	J4	/sys/class/leds/usb4_pwr/brightness
5	J6	/sys/class/leds/usb5_pwr/brightness

以Type A接口USB HOST 供电控制为例,控制方法如下:

```
    ▼
    #开电
    echo 1 > /sys/class/leds/usb1_pwr/brightness
    #断电
    echo 0 > /sys/class/leds/usb1_pwr/brightness
```

当接入U盘设备时,默认挂载到/media/ido/目录下.

•	Bash
1	root@ido:~# mount
2	
3	<pre>/dev/sda1 on /media/ido/KINGSTON type vfat (rw,nosuid,nodev,relatime,uid=10</pre>
	<pre>01,gid=1001,fmask=0022,dmask=0022,codepage=936,iocharset=utf8,shortname=mix</pre>
	ed,showexec,utf8,flush <mark>,errors=</mark> remount-ro, <mark>uhelper=</mark> udisks2)
4	

SD卡

将SD卡插入到SD卡槽中,将自动挂载到/media/ido/目录下。

•	Bash
1	<pre>root@ido:~# mount</pre>
2	
3	<pre>/dev/mmcblk0p1 on /media/ido/E2C4-11A5 type vfat (rw,nosuid,nodev,relatime, uid=1001,gid=1001,fmask=0022,dmask=0022,codepage=936,iocharset=utf8,shortna me=mixed,showexec,utf8,flush,errors=remount-ro,uhelper=udisks2)</pre>
4	

IDO-EVB3020 配置了一个Recovery按键,在设备断电的情况下,该按键用于烧录固件。在系统正常启动后,则可作为普通按键使用。对应的设备节点为/dev/input/event2,键值为 KEY_VOLUMEUP。

Bash

使用evtest进行测试:

```
Bash
    root@ido:~# evtest
 1
2 root@ido:~# evtest
3
    No device specified, trying to scan all of /dev/input/event*
4 Available devices:
5 /dev/input/event0:
                           rk8xx_pwrkey
6 /dev/input/event1:
                          PixArt Dell MS116 USB Optical Mouse
7
    /dev/input/event2:
                           adc-keys
8 = Select the device event number [0-2]: 2
    Input driver version is 1.0.1
9
    Input device ID: bus 0x19 vendor 0x1 product 0x1 version 0x100
10
11
    Input device name: "adc-keys"
12
    Supported events:
      Event type 0 (EV SYN)
13
14
      Event type 1 (EV_KEY)
15
        Event code 1 (KEY_ESC)
        Event code 102 (KEY HOME)
16
        Event code 114 (KEY VOLUMEDOWN)
17
18
        Event code 115 (KEY_VOLUMEUP)
19
        Event code 139 (KEY_MENU)
20
    Properties:
    Event: time 1679646794.524543, ----- SYN_REPORT -----P), v
21
    alue 0
22
23
```

在选择event number为2后,按下RECOVERY按键,即可看到按下和松开打印的信息。

ADC

开发板引出两路10bit有效位的数模转化器,参考电源为1.8V,读取接口如下

序号	位置	接口
1	红色	cat /sys/bus/iio/devices/iio\:device0/in_voltage0_raw
2	黄色	cat /sys/bus/iio/devices/iio\:device0/in_voltage1_raw

ADC值读取

•		Bash
1	<pre>cat /sys/bus/iio/devices/iio\:device0/in_voltage0_raw</pre>	

ADC电压转换关系

Bash
V=(in_voltage0_raw/1024)*1.8v

假设in_voltage2_raw的值为500,则对应的ADC电压为V=(500/1024)*1.8v=0.879v

时间设置

RTC时间读取和同步

系统时间读取和设置

Bash

1 # date

-

- 2 Fri Mar 18 12:00:22 CST 2022
- 3 # date -s "2022-03-18 12:01:00"

rtc时间设置

```
Bash
```

```
•
```

```
1 # hwclock -r
```

- 2 **2022**-03-18 **12:01:06.991425+08:00**
- 3 # hwclock -w

NTP时间同步

系统默认开启了NTP服务,连接网络后,将自动同步网络时间。

时区

查看时区

Bash
 root@ido:~# date -R
 Wed, 26 Oct 2022 03:26:46 +0000

+0000表示在0时区。

设置时区

Bash
1 root@ido:~#export TZ='Asia/Shanghai'
2
3 root@ido:~# date -R
4 Wed, 26 Oct 2022 11:30:02 +0800
5

音频

使用aplay工具查看声卡设备

```
Bash
```

```
1 root@ido:~# aplay -l
```

- 2 **** List of PLAYBACK Hardware Devices ****
- 3 card 0: rockchiprk809co [rockchip,rk809-codec], device 0: ff070000.i2s-rk81 7-hifi rk817-hifi-0 []
- 4 Subdevices: 1/1
- 5 Subdevice #0: subdevice #0

Lineout

不插入耳机,使用aplay播放wav音频测试

-	Bash
1	<pre>root@ido:/# aplay usr/share/sounds/alsa/Rear_Center.wav</pre>
2	<pre>Playing WAVE 'usr/share/sounds/alsa/Rear_Center.wav' : Signed 16 bit Littl</pre>
	e Endian, Rate 48000 Hz, Mono
3	

耳机

插入耳机,使用aplay播放wav音频测试

•	Bash
1	<pre>root@ido:/# aplay usr/share/sounds/alsa/Rear_Center.wav</pre>
2	<pre>Playing WAVE 'usr/share/sounds/alsa/Rear_Center.wav' : Signed 16 bit Littl</pre>
	e Endian, Rate 48000 Hz, Mono
3	

录音

打开mic通道

•		Bash
1	alsamixer	

Capture MIC Path选择Main Mic

录音

参考如下示意图接上麦克风。

使用arecord工具进行录音测试。

```
    Bash
    root@ido:~# arecord -D hw:0,0 -r 48000 -c 2 -f S16_LE test.wav
    Recording WAVE 'test.wav' : Signed 16 bit Little Endian, Rate 48000 Hz, Stereo
    ^CAborted by signal Interrupt...
```

播放录音

显示屏

显示屏接口说明

MIPI屏接口位于开发板背面。接线方式为上接。

TP触摸接口唯一J22,接口接线方式为上接。 注意:不要接错屏线和TP,会存在烧屏和烧TP的风险。

显示设置

屏幕背光亮度设置

MIPI屏背光控制
 设备节点: /sys/class/backlight/backlight/brightness
 设置方法: (支持调节范围 0-255)

▼
 #关闭
 echo 0 > /sys/class/backlight/backlight/brightness
 #最亮
 4 echo 255 > /sys/class/backlight/backlight/brightness